初中數學(xué)知識點(diǎn)總結15篇[優(yōu)秀]
總結是在某一時(shí)期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價(jià),從而得出教訓和一些規律性認識的一種書(shū)面材料,它是增長(cháng)才干的一種好辦法,是時(shí)候寫(xiě)一份總結了?偨Y怎么寫(xiě)才能發(fā)揮它的作用呢?以下是小編為大家整理的初中數學(xué)知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。
初中數學(xué)知識點(diǎn)總結1
初中數學(xué)總復習,是對初中三年來(lái)所學(xué)數學(xué)知識的回顧,鞏固提高,查漏補缺,它不是對知識的簡(jiǎn)單重復,而是引導學(xué)生對所學(xué)知識進(jìn)行系統歸納和升華,并用已學(xué)的知識解決新問(wèn)題。進(jìn)一步加深對數學(xué)概念的理解,弄清各部分知識的內在聯(lián)系,熟練掌握重要的數學(xué)方法和數學(xué)思想,從而達到開(kāi)發(fā)智力、培養能力的目的因此,初中數學(xué)總復習是非常重要的,復習的好壞將決定學(xué)生成績(jì)的好壞、決定學(xué)生掌握知識的牢固程度。一直以來(lái),如何有效提高復習效率,是廣大教師多年來(lái)探求的重要課題之一。筆者從1999年以來(lái),一直擔任初中數學(xué)的教學(xué)任務(wù),所教班級的數學(xué)中考考試成績(jì)一直名列前茅。下面筆者根據對初中數學(xué)總復習的實(shí)踐,總結出的一套較為實(shí)用的復習方法。
一、復習基礎知識階段
在初中數學(xué)復習中,第一階段要緊扣課本,疏理教材,使學(xué)生在頭腦中形成一個(gè)關(guān)于初中數學(xué)知識的前后相連、縱橫交錯、融會(huì )貫通的知識結構。在第一階段中,一般按初中數學(xué)知識體系把初中數學(xué)知識分成九個(gè)單元,即:“數與式”“方程和不等式(組)”“函數及其圖像”“統計與概率”“圖形初步認識和三角形”“四邊形”“相似和解直角三角形”“圓”“圖形的變換、投影與視圖”。按單元進(jìn)行復習。每個(gè)單元按下面步驟進(jìn)行。
1、疏理知識結構
首先,引導學(xué)生把本單元的知識用文字、圖表等方式編織知識網(wǎng)絡(luò ),用簡(jiǎn)表式的結構表示本單元的知識結構;其次,引導學(xué)生回顧基礎知識;最后,以基本習題的形式再現知識的'內容,即通過(guò)一些判斷題、填空題、選擇題、簡(jiǎn)單計算題的訓練達到鞏固基礎知識的目的
2、訓練基本技能和解題技巧
在理順知識結構的基礎上,把每個(gè)單元按知識點(diǎn)分成若干課時(shí),然后按知識點(diǎn)精選例題和練習題,引導學(xué)生進(jìn)行多方練習,多角度思考,正反求解,促進(jìn)學(xué)生掌握基礎知識和解題技巧。
精選的例題和練習題最好從課本上尋找,因為中考的命題原則是:“源于教材,高于教材!彼x例題、練習題力求典型,緊扣教材。另外,也可從近幾年中考試題中改編新穎的題目進(jìn)行訓練。
每課時(shí)的教學(xué)可按“理順知識――嘗試做例題――講解例題――練習――變式練習――作業(yè)”幾個(gè)步驟進(jìn)行。在“理解知識”階段力求簡(jiǎn)單明了地揭示本節課所要復習的知識點(diǎn),領(lǐng)會(huì )概念、定理、公理和數學(xué)思想方法。講解的例題或作業(yè)一般可選擇一部分題進(jìn)行“一題多變”“一題多解”的題目。在分析、講解例題時(shí)切不可就題論題,應注意揭示例題中所反映出的概念、原理和思想方法及解題技巧。
3、單元測試
在上述復習的基礎上,復習完每一個(gè)單元后,必須出示至少4份試卷。第一份試卷,以引導學(xué)生系統地梳理教材、構建知識結構,歸納和總結各種概念、公理、定理、公式為主。第二份試卷,以歸納、總結本單元的常用結論、解題方法、一題多解、一題多變?yōu)橹。對學(xué)生進(jìn)行測試,以了解學(xué)生掌握知識的情況,及時(shí)查漏補缺。
測試題應以教學(xué)大綱、考標、教材為依據,要求內容覆蓋面廣,題目搭配合理、難易適中、題型俱全,富有啟發(fā)性。通過(guò)測試,全面衡量復習效果,一般來(lái)說(shuō),測試題可從以下幾個(gè)方面精選題目:(1)全面體現本單元的基礎知識的填空題和選擇題;(2)本單元所反映出的基本技能和技巧的解答題;(3)綜合運用本單元知識的綜合題。
上面三方面試題的比例為6∶3∶1測試完后,教師進(jìn)行講評,對學(xué)生未弄懂的知識點(diǎn)及時(shí)進(jìn)行補救。
二、綜合訓練,加強重點(diǎn)知識階段
在完成第一階段的基礎上,根據初中數學(xué)知識的重點(diǎn),選擇一些較為典型的綜合題,引導學(xué)生合作探索和研究,以培養學(xué)生綜合運用知識來(lái)分析問(wèn)題和解決問(wèn)題的能力。選擇的題目一般從本市及全省近5年的中考試題中去精選。
綜合題,一般來(lái)說(shuō)有代數綜合題、幾何綜合題、代數和幾何相結合的綜合題。代數綜合題的重點(diǎn)應是二次方程和二次函數;幾何綜合題的重點(diǎn)是三角形、四邊形和圖;代數與幾何相結合的綜合題則是方程、函數與圖像相結合的題。
對于綜合題的訓練,一般采用“嘗試練習――分析――講解――歸納解題方法與技巧――練習”的方式進(jìn)行。對重點(diǎn)問(wèn)題進(jìn)行一題多解、一題多變的訓練。
三、綜合測試,查漏補缺階段
為了進(jìn)一步鞏固數學(xué)知識,全面考查復習效果,提高學(xué)生的心理素質(zhì),在第二階段復習結束時(shí),可進(jìn)行模擬測試。測試題一般自擬幾套和選擇其他省市上屆中考題和本省往屆的中考題,模擬試題,力求全面再現初中數學(xué)知識和方法,既要有考查雙基的基礎題,又要有考查學(xué)生能力的綜合題。有的知識還要與高中知識銜接并拓展。
考完一套,及時(shí)講評,與學(xué)生一起分析,共同探討,列出知識清單使得每個(gè)學(xué)生經(jīng)歷知識收集、整理的過(guò)程,把書(shū)學(xué)“薄”,有效地回顧了一章書(shū)所學(xué)的知識。
初中數學(xué)知識點(diǎn)總結2
1、多項式
有有限個(gè)單項式的代數和組成的式子,叫做多項式。
多項式里每個(gè)單項式叫做多項式的項,不含字母的項,叫做常數項。
單項式可以看作是多項式的特例
把同類(lèi)單項式的系數相加或相減,而單項式中的字母的乘方指數不變。
在多項式中,所含的不同未知數的個(gè)數,稱(chēng)做這個(gè)多項式的元數經(jīng)過(guò)合并同類(lèi)項后,多項式所含單項式的個(gè)數,稱(chēng)為這個(gè)多項式的項數所含個(gè)單項式中次項的次數,就稱(chēng)為這個(gè)多項式的次數。
2、多項式的值
任何一個(gè)多項式,就是一個(gè)用加、減、乘、乘方運算把已知數和未知數連接起來(lái)的式子。
3、多項式的恒等
對于兩個(gè)一元多項式fx、gx來(lái)說(shuō),當未知數x同取任一個(gè)數值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項式就稱(chēng)為是恒等的記為fx==gx,或簡(jiǎn)記為fx=gx。
性質(zhì)1如果fx==gx,那么,對于任一個(gè)數值a,都有fa=ga。
性質(zhì)2如果fx==gx,那么,這兩個(gè)多項式的個(gè)同類(lèi)項系數就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等于0的未知數x的值,叫做多項式fx的`根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們系數作為積的系數,對于相同的字母因式,則連同它的指數作為積的一個(gè)因式。
3、多項式的乘法
多項式與多項式相乘,先用一個(gè)多項式等每一項乘以另一個(gè)多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個(gè)數的和與這兩個(gè)數的差的積等于這兩個(gè)數的平方差。
初中數學(xué)知識點(diǎn)總結3
動(dòng)點(diǎn)與函數圖象問(wèn)題常見(jiàn)的四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象。
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象。
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象。
4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),根據問(wèn)題中的常量與變量之間的關(guān)系,判斷函數圖象。
圖形運動(dòng)與函數圖象問(wèn)題常見(jiàn)的三種類(lèi)型:
1、線(xiàn)段與多邊形的運動(dòng)圖形問(wèn)題:把一條線(xiàn)段沿一定方向運動(dòng)經(jīng)過(guò)三角形或四邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象。
2、多邊形與多邊形的運動(dòng)圖形問(wèn)題:把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)另一個(gè)多邊形,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象。
3、多邊形與圓的運動(dòng)圖形問(wèn)題:把一個(gè)圓沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運動(dòng)經(jīng)過(guò)一個(gè)圓,根據問(wèn)題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數圖象。
動(dòng)點(diǎn)問(wèn)題常見(jiàn)的`四種類(lèi)型:
1、三角形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿三角形的邊運動(dòng),通過(guò)全等或相似,探究構成的新圖形與原圖形的邊或角的關(guān)系。
2、四邊形中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿四邊形的邊運動(dòng),通過(guò)探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系。
3、圓中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿圓周運動(dòng),探究構成的新圖形的邊角等關(guān)系。
4、直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)中的動(dòng)點(diǎn)問(wèn)題:動(dòng)點(diǎn)沿直線(xiàn)、雙曲線(xiàn)、拋物線(xiàn)運動(dòng),探究是否存在動(dòng)點(diǎn)構成的三角形是等腰三角形或與已知圖形相似等問(wèn)題。
總結反思:
本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,一次函數的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線(xiàn)的性質(zhì)等,數形結合思想的應用是解題的關(guān)鍵。
解答動(dòng)態(tài)性問(wèn)題通常是對幾何圖形運動(dòng)過(guò)程有一個(gè)完整、清晰的認識,發(fā)掘“動(dòng)”與“靜”的內在聯(lián)系,尋求變化規律,從變中求不變,從而達到解題目的。
解答函數的圖象問(wèn)題一般遵循的步驟:
1、根據自變量的取值范圍對函數進(jìn)行分段。
2、求出每段的解析式。
3、由每段的解析式確定每段圖象的形狀。
對于用圖象描述分段函數的實(shí)際問(wèn)題,要抓住以下幾點(diǎn):
1、自變量變化而函數值不變化的圖象用水平線(xiàn)段表示。
2、自變量變化函數值也變化的增減變化情況。
3、函數圖象的最低點(diǎn)和最高點(diǎn)。
初中數學(xué)知識點(diǎn)總結4
一、圓
1、圓的有關(guān)性質(zhì)
在一個(gè)平面內,線(xiàn)段OA繞它固定的一個(gè)端點(diǎn)O旋轉一周,另一個(gè)端點(diǎn)A隨之旋轉所形成的圖形叫圓,固定的端點(diǎn)O叫圓心,線(xiàn)段OA叫半徑。
由圓的意義可知:
圓上各點(diǎn)到定點(diǎn)(圓心O)的距離等于定長(cháng)的點(diǎn)都在圓上。
就是說(shuō):圓是到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合,圓的內部可以看作是到圓。心的距離小于半徑的點(diǎn)的集合。
圓的外部可以看作是到圓心的距離大于半徑的點(diǎn)的集合。連結圓上任意兩點(diǎn)的線(xiàn)段叫做弦,經(jīng)過(guò)圓心的弦叫直徑。圓上任意兩點(diǎn)間的部分叫圓弧,簡(jiǎn)稱(chēng)弧。
圓的任意一條直徑的兩個(gè)端點(diǎn)分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu);小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個(gè)圓叫同心圓。
能夠重合的兩個(gè)圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過(guò)三點(diǎn)的圓
l、過(guò)三點(diǎn)的圓
過(guò)三點(diǎn)的圓的作法:利用中垂線(xiàn)找圓心
定理不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。
經(jīng)過(guò)三角形各頂點(diǎn)的圓叫三角形的外接圓,外接圓的圓心叫外心,這個(gè)三角形叫圓的內接三角形。
2、反證法
反證法的三個(gè)步驟:
、偌僭O命題的結論不成立;
、趶倪@個(gè)假設出發(fā),經(jīng)過(guò)推理論證,得出矛盾;
、塾擅艿贸黾僭O不正確,從而肯定命題的結論正確。
例如:求證三角形中最多只有一個(gè)角是鈍角。
證明:設有兩個(gè)以上是鈍角
則兩個(gè)鈍角之和>180°
與三角形內角和等于180°矛盾。
∴不可能有二個(gè)以上是鈍角。
即最多只能有一個(gè)是鈍角。
三、垂直于弦的直徑
圓是軸對稱(chēng)圖形,經(jīng)過(guò)圓心的每一條直線(xiàn)都是它的對稱(chēng)軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個(gè)條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形。
實(shí)際上,圓繞圓心旋轉任意一個(gè)角度,都能夠與原來(lái)的圖形重合。
頂點(diǎn)是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其余各組量都分別相等。
五、圓周角
頂點(diǎn)在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。
由于以上的定理、推理,所添加輔助線(xiàn)往往是添加能構成直徑上的圓周角的輔助線(xiàn)。
相關(guān)的角:
1、對頂角:一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長(cháng)線(xiàn),這兩個(gè)角叫做對頂角。
2、互為補角:如果兩個(gè)角的和是一個(gè)平角,這兩個(gè)角做互為補角。
3、互為余角:如果兩個(gè)角的和是一個(gè)直角,這兩個(gè)角叫做互為余角。
4、鄰補角:有公共頂點(diǎn),一條公共邊,另兩條邊互為反向延長(cháng)線(xiàn)的兩個(gè)角做互為鄰補角。
注意:互余、互補是指兩個(gè)角的'數量關(guān)系,與兩個(gè)角的位置無(wú)關(guān),而互為鄰補角則要求兩個(gè)角有特殊的位置關(guān)系。
角的性質(zhì)
1、對頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補角相等。
其實(shí)角的大小與邊的長(cháng)短沒(méi)有關(guān)系,角的大小決定于角的兩條邊張開(kāi)的程度。
角的靜態(tài)定義
具有公共端點(diǎn)的兩條射線(xiàn)組成的圖形叫做角(angle)。這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線(xiàn)叫做角的兩條邊。
角的動(dòng)態(tài)定義
一條射線(xiàn)繞著(zhù)它的端點(diǎn)從一個(gè)位置旋轉到另一個(gè)位置所形成的圖形叫做角。所旋轉射線(xiàn)的端點(diǎn)叫做角的頂點(diǎn),開(kāi)始位置的射線(xiàn)叫做角的始邊,終止位置的射線(xiàn)叫做角的終邊
角的符號
角的符號:∠
角的種類(lèi)
在動(dòng)態(tài)定義中,取決于旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱(chēng)為角度制。此外,還有密位制、弧度制等。
銳角:大于0°,小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:等于180°的角叫做平角。
優(yōu)角:大于180°小于360°叫優(yōu)角。
劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。
角周角:等于360°的角叫做周角。
負角:按照順時(shí)針?lè )较蛐D而成的角叫做負角。
正角:逆時(shí)針旋轉的角為正角。
0角:等于零度的角。
特殊角
余角和補角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補角。等角的余角相等,等角的補角相等。
對頂角:兩條直線(xiàn)相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長(cháng)線(xiàn),這樣的兩個(gè)角叫做互為對頂角。兩條直線(xiàn)相交,構成兩對對頂角;閷斀堑膬蓚(gè)角相等。
鄰補角:兩個(gè)角有一條公共邊,它們的另一條邊互為反向延長(cháng)線(xiàn),具有這種關(guān)系的兩個(gè)角,互為鄰補角。
內錯角:互相平行的兩條直線(xiàn)直線(xiàn),被第三條直線(xiàn)所截,如果兩個(gè)角都在兩條直線(xiàn)的
內側,并且在第三條直線(xiàn)的兩側,那么這樣的一對角叫做內錯角(alternate interior angle )。如:∠1和∠6,∠2和∠5
同旁?xún)冉牵簝蓚(gè)角都在截線(xiàn)的同一側,且在兩條被截線(xiàn)之間,具有這樣位置關(guān)系的一對角互為同旁?xún)冉。如:?和∠5,∠2和∠6
同位角:兩個(gè)角都在截線(xiàn)的同旁,又分別處在被截的兩條直線(xiàn)同側,具有這樣位置關(guān)系的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外錯角:兩條直線(xiàn)被第三條直線(xiàn)所截,構成了八個(gè)角。如果兩個(gè)角都在兩條被截線(xiàn)的外側,并且在截線(xiàn)的兩側,那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。
同旁外角:兩個(gè)角都在截線(xiàn)的同一側,且在兩條被截線(xiàn)之外,具有這樣位置關(guān)系的一對角互為同旁外角。如:∠4和∠8,∠3和∠7
終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:
A{bb=k_360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
、僦本(xiàn)和圓無(wú)公共點(diǎn),稱(chēng)相離。 AB與圓O相離,d>r。
、谥本(xiàn)和圓有兩個(gè)公共點(diǎn),稱(chēng)相交,這條直線(xiàn)叫做圓的割線(xiàn)。AB與⊙O相交,d
、壑本(xiàn)和圓有且只有一公共點(diǎn),稱(chēng)相切,這條直線(xiàn)叫做圓的切線(xiàn),這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。AB與⊙O相切,d=r。(d為圓心到直線(xiàn)的距離)
平面內,直線(xiàn)Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個(gè)關(guān)于x的方程
如果b^2-4ac>0,則圓與直線(xiàn)有2交點(diǎn),即圓與直線(xiàn)相交。
如果b^2-4ac=0,則圓與直線(xiàn)有1交點(diǎn),即圓與直線(xiàn)相切。
如果b^2-4ac<0,則圓與直線(xiàn)有0交點(diǎn),即圓與直線(xiàn)相離。
2.如果B=0即直線(xiàn)為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時(shí)的兩個(gè)x值x1、x2,并且規定x1
當x=-C/Ax2時(shí),直線(xiàn)與圓相離;
初中數學(xué)知識點(diǎn)總結5
初中生經(jīng)過(guò)中考的奮力拼搏,剛跨入高中,都有十足的信心,旺盛的求知欲,都有把高中課程學(xué)好的愿望。但經(jīng)過(guò)一段時(shí)間,他們普遍感覺(jué)高中數學(xué)并非想象中那么簡(jiǎn)單易學(xué),而是太枯燥,泛味,抽象,晦澀,有些章節如聽(tīng)天書(shū)。在做習題,課外練習時(shí),又是磕磕碰碰,跌跌撞撞,常常感到茫然一片,不知從何下手。造成這種現象的原因是多方面的,但最主要的根源還在于初,高中數學(xué)教學(xué)上的銜接問(wèn)題。下面就這個(gè)問(wèn)題進(jìn)行分析,探討其原因,尋找解決對策。
一、高一學(xué)生學(xué)習數學(xué)產(chǎn)生困難是造成數學(xué)成績(jì)下降的主要原因
。ㄒ唬┙滩牡脑。
由于實(shí)行九年制義務(wù)教育和倡導全面提高學(xué)生素質(zhì),現行初中數學(xué)教材在內容上進(jìn)行了較大幅度的調整,難度,深度和廣度大大降低了,那些在高中學(xué)習中經(jīng)常應用到的知識,如:對數,二次不等式,解斜三角形,分數指數冪等內容,都轉移到高一階段補充學(xué)習。這樣初中教材就體現了"淺,少,易"的特點(diǎn),但卻加重了高一數學(xué)的份量。另外,初中數學(xué)教材中每一新知識的引入往往與學(xué)生日常生活實(shí)際很貼近,比較形象,并遵循從感性認識上升到理性認識的規律,學(xué)生一般都容易理解,接受和掌握。且目前初中教材敘述方法比較簡(jiǎn)單,語(yǔ)言通俗易懂,直觀(guān)性,趣味性強,結論容易記憶,應試效果也比較理想。
相對而言,高中數學(xué)一開(kāi)始,概念抽象,定理嚴謹,邏輯性強,教材敘述比較嚴謹,規范,抽象思維和空間想象明顯提高,知識難度加大,且習題類(lèi)型多,解題技巧靈活多變,計算繁冗復雜,體現了"起點(diǎn)高,難度大,容量多"的特點(diǎn)。
。ǘ┙谭ǖ脑。
初中數學(xué)教學(xué)內容少,知識難度不大,教學(xué)要求較低,因而教學(xué)進(jìn)度較慢,對于某些重點(diǎn),難點(diǎn),教師可以有充裕的`時(shí)間反復講解,多次演練,從而各個(gè)擊破、另外,為了應付中考,初中教師大多數采用"滿(mǎn)堂灌"填鴨式的教學(xué)模式,單純地向學(xué)生傳授知識,并讓學(xué)生通過(guò)機械模仿式的重復練習以達到熟能生巧的程度,結果造成"重知識,輕能力","重局部,輕整體","重試卷(復習資料),輕書(shū)本"的不良傾向。這種封閉被動(dòng)的傳統教學(xué)方式嚴重束縛了學(xué)生思維的發(fā)展,影響了學(xué)生發(fā)現意識的形成,創(chuàng )新思維受到了扼制。但是進(jìn)入高中以后,教材內涵豐富,教學(xué)要求高,進(jìn)度快,知識信息廣泛,題目難度加深,知識的重點(diǎn)和難點(diǎn)也不可能象初中那樣通過(guò)反復強調來(lái)排難釋疑。而且高中教學(xué)往往通過(guò)設導,設問(wèn),設陷,設變,啟發(fā)引導,開(kāi)拓思路,然后由學(xué)生自己去思考,去解答,比較注意知識的發(fā)生過(guò)程,傾重對學(xué)生思想方法的滲透和思維品質(zhì)的培養。這使得剛進(jìn)入高中的學(xué)生不容易適應這種教學(xué)方法。聽(tīng)課時(shí)就存在思維障礙,不容易跟上教師的思維,從而產(chǎn)生學(xué)習障礙,影響數學(xué)的學(xué)習。
。ㄈ⿲W(xué)生自身的原因。
、俦粍(dòng)學(xué)習
在初中,教師講得細,類(lèi)型歸納得全,反復練習?荚嚂r(shí),學(xué)生只要記憶概念,公式,及例題類(lèi)型,一般都可以對號入座取得好成績(jì)。因此,學(xué)生習慣于圍著(zhù)教師轉,不需要獨立思考和對規律進(jìn)行歸納總結。學(xué)生滿(mǎn)足于你講我聽(tīng),你放我錄,缺乏學(xué)習主動(dòng)性。表現在不定計劃,坐等上課,課前沒(méi)有預習,對老師上課的內容不了解,上課忙于記筆記,沒(méi)聽(tīng)到"門(mén)道",沒(méi)有真正理解所學(xué)內容。而到了高中,數學(xué)學(xué)習要求學(xué)生勤于思考,善于歸納總結規律,掌握數學(xué)思想方法,做到舉一反三,觸類(lèi)旁通。所以,剛入學(xué)的高一新生,往往沿用初中學(xué)法,致使學(xué)習出現困難,完成當天作業(yè)都很困難,更沒(méi)有預習,復習,總結等自我消化,自我調整的時(shí)間。這顯然不利于良好學(xué)法的形成和學(xué)習質(zhì)量的提高。造成高一學(xué)生數學(xué)學(xué)習的困難。
、趯W(xué)不得法
老師上課一般都要講清知識的來(lái)龍去脈,剖析概念的內涵,分析重點(diǎn)難點(diǎn),突出思想方法。而一部分同學(xué)上課沒(méi)能專(zhuān)心聽(tīng)課,對要點(diǎn)沒(méi)聽(tīng)到或聽(tīng)不全,筆記記了一大本,問(wèn)題也有一大堆,課后又不能及時(shí)鞏固,總結,尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念,法則,公式,定理一知半解,機械模仿,死記硬背。也有的晚上加班加點(diǎn),白天無(wú)精打采,或是上課根本不聽(tīng),自己另搞一套,結果是事倍功半,收效甚微。
二、搞好初高中數學(xué)教學(xué)銜接,幫助學(xué)生渡過(guò)學(xué)習數學(xué)"困難期"的對策
。ㄒ唬┳龊脺蕚涔ぷ,為搞好銜接打好基礎。
1、搞好入學(xué)教育。這是搞好銜接的基礎工作,也是首要工作。
通過(guò)入學(xué)教育提高學(xué)生對初高中銜接重要性的認識,增強緊迫感,消除松懈情緒,初步了解高中數學(xué)學(xué)習的特點(diǎn),為其它措施的落實(shí)奠定基礎。這里主要做好四項工作:一是給學(xué)生講清高一數學(xué)在整個(gè)中學(xué)數學(xué)中所占的位置和作用;二是結合實(shí)例,采取與初中對比的方法,給學(xué)生講清高中數學(xué)內容體系特點(diǎn)和課堂教學(xué)特點(diǎn);三是結合實(shí)例給學(xué)生講明初高中數學(xué)在學(xué)法上存在的本質(zhì)區別,并向學(xué)生介紹一些優(yōu)秀學(xué)法,指出注意事項;四是請高年級學(xué)生談體會(huì )講感受,引導學(xué)生少走彎路,盡快適應高中學(xué)習。
2、摸清底數,規劃教學(xué)。為了搞好初高中銜接,教師首先要摸清學(xué)生的學(xué)習基礎,然后以此來(lái)規劃自己的教學(xué)和落實(shí)教學(xué)要求,以提高教學(xué)的針對性。在教學(xué)實(shí)際中,一方面通過(guò)進(jìn)行摸底測試和對入學(xué)成績(jì)的分析,了解學(xué)生的基礎;另一方面,認真學(xué)習和比較初高中教學(xué)大綱和教材,以全面了解初高中數學(xué)知識體系,找出初高中知識的銜接點(diǎn),區別點(diǎn)和需要鋪路搭橋的知識點(diǎn),以使備課和講課更符合學(xué)生實(shí)際,更具有針對性。
。ǘ﹥(yōu)化課堂教學(xué)環(huán)節,搞好初高中數學(xué)知識銜接教學(xué)。
1、立足于大綱和教材,尊重學(xué)生實(shí)際,實(shí)行層次教學(xué)。
高一數學(xué)中有許多難理解和掌握的知識點(diǎn),如集合,映射等,對高一新生來(lái)講確實(shí)困難較大。因此,在教學(xué)中,應從高一學(xué)生實(shí)際出發(fā),采用低起點(diǎn),小梯度,多訓練,分層次"的方法,將教學(xué)目標分解成若干遞進(jìn)層次逐層落實(shí)。在速度上,放慢起始進(jìn)度,逐步加快教學(xué)節奏。在知識導入上,多由實(shí)例和已知引入。在知識落實(shí)上,先落實(shí)"死"課本,后變通延伸用活課本。在難點(diǎn)知識講解上,從學(xué)生理解和掌握的實(shí)際出發(fā),對教材作必要層次處理和知識鋪墊,并對知識的理解要點(diǎn)和應用注意點(diǎn)作必要總結及舉例說(shuō)明。
2、重視新舊知識的聯(lián)系與區別,建立知識網(wǎng)絡(luò )。
初高中數學(xué)有很多銜接知識點(diǎn),如函數概念,平面幾何與立體幾何相關(guān)知識等,到高中,它們有的加深了,有的研究范圍擴大了,有些在初中成立的結論到高中可能不成立。因此,在講授新知識時(shí),應當有意引導學(xué)生聯(lián)系舊知識,復習和區別舊知識,特別注重對那些易錯易混的知識加以分析,比較和區別。這樣可達到溫故知新,溫故而探新的效果。
3、重視展示知識的形成過(guò)程和方法探索過(guò)程,培養學(xué)生創(chuàng )造能力。
高中數學(xué)比初中數學(xué)抽象性強,應用靈活,這就要求學(xué)生對知識理解要透,應用要活,不能只停留在對知識結論的死記硬套上,這就要求教師應向學(xué)生展示新知識和新解法的產(chǎn)生背景,形成和探索過(guò)程,不僅使學(xué)生掌握知識和方法的本質(zhì),提高應用的靈活性,而且還使學(xué)生學(xué)會(huì )如何質(zhì)疑和釋疑的思想方法,促進(jìn)創(chuàng )造性思維能力的提高。
4、重視培養學(xué)生自我反思自我總結的良好習慣,提高學(xué)習的自覺(jué)性。
高中數學(xué)概括性強,題目靈活多變,課上聽(tīng)懂是不夠的,需要課后進(jìn)行認真消化,認真總結歸納。這就要求學(xué)生應具備善于自我反思和自我總結的能力。因此,在教學(xué)中,應當抓住時(shí)機積極培養。在單元結束時(shí),幫助學(xué)生進(jìn)行自我章節小結,在解題后,積極引導學(xué)生反思:思解題思路和步驟,思一題多解和一題多變,思解題方法和解題規律的總結。由此培養學(xué)生善于進(jìn)行自我反思的習慣,擴大知識和方法的應用范圍,提高學(xué)習效率。
。ㄈ┘訌妼W(xué)法指導,培養良好學(xué)習習慣
初中數學(xué)知識點(diǎn)總結6
1、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形;同圓或等圓的半徑相等。
2、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓。
3、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
4、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合。
5、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。
6、不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
7、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
推論1:
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條;
、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條;
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2:圓的兩條平行弦所夾的弧相等。
8、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
9、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角。
10、經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。
11、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。
12、切線(xiàn)的性質(zhì)定理圓的'切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。
13、經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)
14、切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。
15、圓的外切四邊形的兩組對邊的和相等外角等于內對角。
16、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上。
17、
、賰蓤A外離d>R+r
、趦蓤A外切d=R+r
、蹆蓤A相交d>R-r)
、軆蓤A內切d=R-r(R>r)
、輧蓤A內含d=r)
18、定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。
19、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓。
20、弧長(cháng)計算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。
21、內公切線(xiàn)長(cháng)= d-(R-r)外公切線(xiàn)長(cháng)= d-(R+r)。
22、定理一條弧所對的圓周角等于它所對的圓心角的一半。
23、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
24、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
初中數學(xué)知識點(diǎn)總結7
一、基本知識
、、數與代數A、數與式:
1、有理數
有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方
向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。②正數的絕對值是他的本身、負數的
絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0。
、鄢朔e為1的兩個(gè)有理數互為倒數。除法:①除以一個(gè)數等于乘以一個(gè)數的倒數。
、0不能作除數。
乘方:求N個(gè)相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數;旌享樞颍合人愠朔,再算乘除,最后算加減,有括號要先算括號里的。2、實(shí)數
無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數
平方根:
、偃绻粋(gè)正數X的平方等于A(yíng),那么這個(gè)正數X就叫做A的算術(shù)平方根。
、谌绻粋(gè)數X的平方等于A(yíng),那么這個(gè)數X就叫做A的平方根。③一個(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。
、芮笠粋(gè)數A的平方根運算,叫做開(kāi)平方,其中A叫做被開(kāi)方數。
立方根:
、偃绻粋(gè)數X的立方等于A(yíng),那么這個(gè)數X就叫做A的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。③求一個(gè)數A的立方根的運算叫開(kāi)立方,其中A叫做被開(kāi)方數。
實(shí)數:
、賹(shí)數分有理數和無(wú)理數。
、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。3、代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:①所含字母相同,并且相同字母的指數也相同的項,叫做同類(lèi)項。
、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。
、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。③一個(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。冪的運算:AM+AN=A(M+N)
。ˋM)N=AMN
。ˋ/B)N=AN/BN除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作
為積的因式。
、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。③多項式與多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:①單項式相除,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則
連同他的指數一起作為商的一個(gè)因式。
、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個(gè)分式等于乘以這個(gè)分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。②異分母的分式先通分,化為同分母的分式,再加減。分式方程:①分母中含有未知數的方程叫分式方程。②使方程的分母為0的解稱(chēng)為原方程的增根。B、方程與不等式1、方程與方程組
一元一次方程:①在一個(gè)方程中,只含有一個(gè)未知數,并且未知數的指數是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r(shí)加上或減去或乘以或除以(不為0)一個(gè)代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類(lèi)項,未知數系數化為1。
二元一次方程:含有兩個(gè)未知數,并且所含未知數的項的次數都是1的`方程叫做二元一次方程。二元一次方程組:兩個(gè)二元一次方程組成的方程組叫做二元一次方程組。適合一個(gè)二元一次方程的一組未知數的值,叫做這個(gè)二元一次方程的一個(gè)解。二元一次方程組中各個(gè)方程的公共解,叫做這個(gè)二元一次方程的解。解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個(gè)未知數,并且未知數的項的最高系數為2的方程1)一元二次方程的二次函數的關(guān)系
大家已經(jīng)學(xué)過(guò)二次函數(即拋物線(xiàn))了,對他也有很深的了解,好像解法,在圖象中表示等等,其實(shí)一元二次方程也可以用二次函數來(lái)表示,其實(shí)一元二次方程也是二次函數的一個(gè)特殊情況,就是當Y的0的時(shí)候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來(lái),一元二次方程就是二次函數中,圖象與X軸的交點(diǎn)。也就是該方程的解了2)一元二次方程的解法
大家知道,二次函數有頂點(diǎn)式(-b/2a,4ac-b2/4a),這大家要記住,很重要,因為在上面已經(jīng)說(shuō)過(guò)了,一元二次方程也是二次函數的一部分,所以他也有自己的一個(gè)解法,利用他可以求出所有的一元一次方程的解(1)配方法
利用配方,使方程變?yōu)橥耆椒焦,在用直接開(kāi)平方法去求出解(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時(shí)候也一樣,利用這點(diǎn),把方程化為幾個(gè)乘積的
形式去解(3)公式法
這方法也可以是在解一元二次方程的萬(wàn)能方法了,方程的根X1={-b+√[b2-4ac)]}/2a,X2={-b-√[b2-4ac)]}/2a3)解一元二次方程的步驟:(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的系數化為1,再同時(shí)加上1次項的系數的一半的平方,最后配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法
就把一元二次方程的各系數分別代入,這里二次項的系數為a,一次項的系數為b,常數項的系數為c4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各系數,在題目中很常用5)一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書(shū)面上可以寫(xiě)為“△”,讀作“diaota”,而△=b2-4ac,這里可以分為3種情況:
I當△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數根;II當△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數根;
III當△B,A+C>B+C在不等式中,如果減去同一個(gè)數(或加上一個(gè)負數),不等式符號不改向;例如:A>B,A-C>B-C在不等式中,如果乘以同一個(gè)正數,不等號不改向;例如:A>B,A*C>B*C(C>0)在不等式中,如果乘以同一個(gè)負數,不等號改向;例如:A>B,A*C系內描出它的對應點(diǎn),所有這些點(diǎn)組成的圖形叫做該函數的圖象。②正比例函數Y=KX的圖象是經(jīng)過(guò)原點(diǎn)的一條直線(xiàn)。
、墼谝淮魏瘮抵,當K〈0,B〈O,則經(jīng)234象限;當K〈0,B〉0時(shí),則經(jīng)124象限;當K〉0,B〈0時(shí),則經(jīng)134象限;當K〉0,B〉0時(shí),則經(jīng)123象限。
、墚擪〉0時(shí),Y的值隨X值的增大而增大,當X〈0時(shí),Y的值隨X值的增大而減少。
、婵臻g與圖形A、圖形的認識1、點(diǎn),線(xiàn),面
點(diǎn),線(xiàn),面:①圖形是由點(diǎn),線(xiàn),面構成的。
、诿媾c面相交得線(xiàn),線(xiàn)與線(xiàn)相交得點(diǎn)。③點(diǎn)動(dòng)成線(xiàn),線(xiàn)動(dòng)成面,面動(dòng)成體。
展開(kāi)與折疊:①在棱柱中,任何相鄰的兩個(gè)面的交線(xiàn)叫做棱,側棱是相鄰兩個(gè)側面的交線(xiàn),棱柱的所有側棱長(cháng)相
等,棱柱的上下底面的形狀相同,側面的形狀都是長(cháng)方體。②N棱柱就是底面圖形有N條邊的棱柱。
截一個(gè)幾何體:用一個(gè)平面去截一個(gè)圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線(xiàn)上的線(xiàn)段依次首尾相連組成的封閉圖形;、扇形:①由一條弧和經(jīng)過(guò)這條弧的端點(diǎn)的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個(gè)扇形。
2、角
線(xiàn):①線(xiàn)段有兩個(gè)端點(diǎn)。
、趯⒕(xiàn)段向一個(gè)方向無(wú)限延長(cháng)就形成了射線(xiàn)。射線(xiàn)只有一個(gè)端點(diǎn)。③將線(xiàn)段的兩端無(wú)限延長(cháng)就形成了直線(xiàn)。直線(xiàn)沒(méi)有端點(diǎn)。④經(jīng)過(guò)兩點(diǎn)有且只有一條直線(xiàn)。
比較長(cháng)短:①兩點(diǎn)之間的所有連線(xiàn)中,線(xiàn)段最短。
、趦牲c(diǎn)之間線(xiàn)段的長(cháng)度,叫做這兩點(diǎn)之間的距離。
角的度量與表示:①角由兩條具有公共端點(diǎn)的射線(xiàn)組成,兩條射線(xiàn)的公共端點(diǎn)是這個(gè)角的頂點(diǎn)。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉而成的。
、谝粭l射線(xiàn)繞著(zhù)他的端點(diǎn)旋轉,當終邊和始邊成一條直線(xiàn)時(shí),所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時(shí),所成的角叫做周角。
、蹚囊粋(gè)角的頂點(diǎn)引出的一條射線(xiàn),把這個(gè)角分成兩個(gè)相等的角,這條射線(xiàn)叫做這個(gè)角的平分線(xiàn)。
平行:①同一平面內,不相交的兩條直線(xiàn)叫做平行線(xiàn)。
、诮(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行。
、廴绻麅蓷l直線(xiàn)都與第3條直線(xiàn)平行,那么這兩條直線(xiàn)互相平行。垂直:①如果兩條直線(xiàn)相交成直角,那么這兩條直線(xiàn)互相垂直。
、诨ハ啻怪钡膬蓷l直線(xiàn)的交點(diǎn)叫做垂足。
、燮矫鎯,過(guò)一點(diǎn)有且只有一條直線(xiàn)與已知直線(xiàn)垂直。垂直平分線(xiàn):垂直和平分一條線(xiàn)段的直線(xiàn)叫垂直平分線(xiàn)。
垂直平分線(xiàn)垂直平分的一定是線(xiàn)段,不能是射線(xiàn)或直線(xiàn),這根據射線(xiàn)和直線(xiàn)可以無(wú)限延長(cháng)有關(guān),再看后面的,垂直平分線(xiàn)是一條直線(xiàn),所以在畫(huà)垂直平分線(xiàn)的時(shí)候,確定了2點(diǎn)后(關(guān)于畫(huà)法,后面會(huì )講)一定要把線(xiàn)段穿出2點(diǎn)。
垂直平分線(xiàn)定理:
性質(zhì)定理:在垂直平分線(xiàn)上的點(diǎn)到該線(xiàn)段兩端點(diǎn)的距離相等;判定定理:到線(xiàn)段2端點(diǎn)距離相等的點(diǎn)在這線(xiàn)段的垂直平分線(xiàn)上角平分線(xiàn):把一個(gè)角平分的射線(xiàn)叫該角的角平分線(xiàn)。
定義中有幾個(gè)要點(diǎn)要注意一下的,就是角的角平分線(xiàn)是一條射線(xiàn),不是線(xiàn)段也不是直線(xiàn),很多時(shí),在題目中會(huì )出
現直線(xiàn),這是角平分線(xiàn)的對稱(chēng)軸才會(huì )用直線(xiàn)的,這也涉及到軌跡的問(wèn)題,一個(gè)角個(gè)角平分線(xiàn)就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線(xiàn)上正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)判定:1、對角線(xiàn)相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過(guò)兩點(diǎn)有且只有一條直線(xiàn)2、兩點(diǎn)之間線(xiàn)段最短
3、同角或等角的補角相等4、同角或等角的余角相等
5、過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6、直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7、平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8、如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9、同位角相等,兩直線(xiàn)平行10、內錯角相等,兩直線(xiàn)平行11、同旁?xún)冉腔パa,兩直線(xiàn)平行12、兩直線(xiàn)平行,同位角相等13、兩直線(xiàn)平行,內錯角相等14、兩直線(xiàn)平行,同旁?xún)冉腔パa
15、定理三角形兩邊的和大于第三邊16、推論三角形兩邊的差小于第三邊
17、三角形內角和定理三角形三個(gè)內角的和等于180°18、推論1直角三角形的兩個(gè)銳角互余
19、推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20、推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25、邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等
26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27、定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29、角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30、等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31、推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
32、等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33、推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34、等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)35、推論1三個(gè)角都相等的三角形是等邊三角形
36、推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
5
39、定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40、逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41、線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42、定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43、定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44、定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上45、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)46、勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a2+b2=c2,那么這個(gè)三角形是直角三角形48、定理四邊形的內角和等于360°49、四邊形的外角和等于360°
50、多邊形內角和定理n邊形的內角的和等于(n-2)×180°51、推論任意多邊的外角和等于360°
52、平行四邊形性質(zhì)定理1平行四邊形的對角相等53、平行四邊形性質(zhì)定理2平行四邊形的對邊相等54、推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55、平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分
56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60、矩形性質(zhì)定理1矩形的四個(gè)角都是直角61、矩形性質(zhì)定理2矩形的對角線(xiàn)相等
62、矩形判定定理1有三個(gè)角是直角的四邊形是矩形63、矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64、菱形性質(zhì)定理1菱形的四條邊都相等
65、菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66、菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267、菱形判定定理1四邊都相等的四邊形是菱形
68、菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形
69、正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70、正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角71、定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72、定理2關(guān)于中心對稱(chēng)的兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分
73、逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)74、等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75、等腰梯形的兩條對角線(xiàn)相等
76、等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77、對角線(xiàn)相等的梯形是等腰梯形
78、平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等79、推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80、推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81、三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半
82、梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性質(zhì):如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84、(2)合比性質(zhì):如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性質(zhì):如果a/b=c/d==m/n(b+d++n≠0),
那么(a+c++m)/(b+d++n)=a/b
86、平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87、推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例
88、定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89、平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例90、定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92、直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93、判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94、判定定理3三邊對應成比例,兩三角形相似(SSS)95、定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似
96、性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比97、性質(zhì)定理2相似三角形周長(cháng)的比等于相似比
98、性質(zhì)定理3相似三角形面積的比等于相似比的平方
99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102、圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103、圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104、同圓或等圓的半徑相等
105、到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106、和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107、到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108、到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)109、定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。
110、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1
、倨椒窒遥ú皇侵睆剑┑闹睆酱怪庇谙,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
116、定理一條弧所對的圓周角等于它所對的圓心角的一半
117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形120、定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121、①直線(xiàn)L和⊙O相交dr②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離dr
122、切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)123、切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑
124、推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125、推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126、切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理弦切角等于它所夾的弧對的圓周角
129、推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130、相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
132、切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項133、推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等134、如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上
135、①兩圓外離dR+r②兩圓外切d=R+r③兩圓相交R-rdR+r(Rr)
、軆蓤A內切d=R-r(Rr)⑤兩圓內含dR-r(Rr)136、定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦137、定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138、定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓139、正n邊形的每個(gè)內角都等于(n-2)×180°/n
140、定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)142、正三角形面積√3a/4a表示邊長(cháng)
143、如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長(cháng)計算公式:L=n兀R/180
145、扇形面積公式:S扇形=n兀R^2/360=LR/2146、內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)
一、常用數學(xué)公式
公式分類(lèi)公式表達式乘法與因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b|
|a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a
根與系數的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根
b2-4ac歸謬是反證法的關(guān)鍵,導出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設出發(fā),否則推導將成為無(wú)源之水,無(wú)本之木。推理必須嚴謹。導出的矛盾有如下幾種類(lèi)型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來(lái)證明平面幾何題有時(shí)會(huì )收到事半功倍的效果。運用面積關(guān)系來(lái)證明或計算平面幾何題的方法,稱(chēng)為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線(xiàn)。面積法的特點(diǎn)是把已知和未知各量用面積公式聯(lián)系起來(lái),通過(guò)運算達到求證的結果。所以用面積法來(lái)解幾何題,幾何元素之間關(guān)系變成數量之間的關(guān)系,只需要計算,有時(shí)可以不添置補助線(xiàn),即使需要添置輔助線(xiàn),也很容易考慮到。9、幾何變換法
在數學(xué)問(wèn)題的研究中,常常運用變換法,把復雜性問(wèn)題轉化為簡(jiǎn)單性的問(wèn)題而得到解決。所謂變換是一個(gè)集合的任一元素到同一集合的元素的一個(gè)一一映射。中學(xué)數學(xué)中所涉及的變換主要是初等變換。有一些看來(lái)很難甚至于無(wú)法下手的習題,可以借助幾何變換法,化繁為簡(jiǎn),化難為易。另一方面,也可將變換的觀(guān)點(diǎn)滲透到中學(xué)數學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動(dòng)中的研究結合起來(lái),有利于對圖形本質(zhì)的認識。幾何變換包括:(1)平移;(2)旋轉;(3)對稱(chēng)。10、客觀(guān)性題的解題方法
選擇題是給出條件和結論,要求根據一定的關(guān)系找出正確答案的一類(lèi)題型。選擇題的題型構思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標準化考試的重要題型之一,它同選擇題一樣具有考查目標明確,知識復蓋面廣,評卷準確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點(diǎn),不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。要想迅速、正確地解選擇題、填空題,除了具有準確的計算、嚴密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過(guò)實(shí)例介紹常用方法。
。1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結論,選擇正確答案,這就是傳統的解題方法,這種解法叫直接推演法。
。2)驗證法:由題設找出合適的驗證條件,再通過(guò)驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱(chēng)為驗證法(也稱(chēng)代入法)。當遇到定量命題時(shí),常用此法。
。3)特殊元素法:用合適的特殊元素(如數或圖形)代入題設條件或結論中去,從而獲得解答。這種方法叫特殊元素法。
。4)排除、篩選法:對于正確答案有且只有一個(gè)的選擇題,根據數學(xué)知識或推理、演算,把不正確的結論排除,余下的結論再經(jīng)篩選,從而作出正確的結論的解法叫排除、篩選法。
。5)圖解法:借助于符合題設條件的圖形或圖象的性質(zhì)、特點(diǎn)來(lái)判斷,作出正確的選擇稱(chēng)為圖解法。圖解法是解選擇題常用方法之一。
。6)分析法:直接通過(guò)對選擇題的條件和結論,作詳盡的分析、歸納和判斷,從而選出正確的結果,為分析法。
初中數學(xué)知識點(diǎn)總結8
一、數與代數
a、數與式:
1、有理數:
、僬麛怠麛/0/負整數
、诜謹怠謹/負分數
數軸:
、佼(huà)一條水平直線(xiàn),在直線(xiàn)上取一點(diǎn)表示0(原點(diǎn)),選取某一長(cháng)度作為單位長(cháng)度,規定直線(xiàn)上向右的方向為正方向,就得到數軸。
、谌魏我粋(gè)有理數都可以用數軸上的一個(gè)點(diǎn)來(lái)表示。
、廴绻麅蓚(gè)數只有符號不同,那么我們稱(chēng)其中一個(gè)數為另外一個(gè)數的相反數,也稱(chēng)這兩個(gè)數互為相反數。在數軸上,表示互為相反數的兩個(gè)點(diǎn),位于原點(diǎn)的兩側,并且與原點(diǎn)距離相等。
、軘递S上兩個(gè)點(diǎn)表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
、僭跀递S上,一個(gè)數所對應的點(diǎn)與原點(diǎn)的距離叫做該數的絕對值。
、谡龜档慕^對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個(gè)負數比較大小,絕對值大的反而小。
有理數的運算:加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時(shí)和為0;絕對值不等時(shí),取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
、垡粋(gè)數與0相加不變。
減法:減去一個(gè)數,等于加上這個(gè)數的相反數。
乘法:
、賰蓴迪喑,同號得正,異號得負,絕對值相乘。
、谌魏螖蹬c0相乘得0。
、鄢朔e為1的兩個(gè)有理數互為倒數。
除法:
、俪砸粋(gè)數等于乘以一個(gè)數的'倒數。
、0不能作除數。
乘方:求n個(gè)相同因數a的積的運算叫做乘方,乘方的結果叫冪,a叫底數,n叫次數。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實(shí)數無(wú)理數:無(wú)限不循環(huán)小數叫無(wú)理數
平方根:
、偃绻粋(gè)正數x的平方等于a,那么這個(gè)正數x就叫做a的算術(shù)平方根。
、谌绻粋(gè)數x的平方等于a,那么這個(gè)數x就叫做a的平方根。
、垡粋(gè)正數有2個(gè)平方根/0的平方根為0/負數沒(méi)有平方根。
、芮笠粋(gè)數a的平方根運算,叫做開(kāi)平方,其中a叫做被開(kāi)方數。
立方根:
、偃绻粋(gè)數x的立方等于a,那么這個(gè)數x就叫做a的立方根。
、谡龜档牧⒎礁钦龜、0的立方根是0、負數的立方根是負數。
、矍笠粋(gè)數a的立方根的運算叫開(kāi)立方,其中a叫做被開(kāi)方數。
實(shí)數:
、賹(shí)數分有理數和無(wú)理數。
、谠趯(shí)數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。
、勖恳粋(gè)實(shí)數都可以在數軸上的一個(gè)點(diǎn)來(lái)表示。
3、代數式
代數式:?jiǎn)为氁粋(gè)數或者一個(gè)字母也是代數式。
合并同類(lèi)項:
、偎帜赶嗤,并且相同字母的指數也相同的項,叫做同類(lèi)項。
、诎淹(lèi)項合并成一項就叫做合并同類(lèi)項。
、墼诤喜⑼(lèi)項時(shí),我們把同類(lèi)項的系數相加,字母和字母的指數不變。
4、整式與分式
整式:
、贁蹬c字母的乘積的代數式叫單項式,幾個(gè)單項式的和叫多項式,單項式和多項式統稱(chēng)整式。
、谝粋(gè)單項式中,所有字母的指數和叫做這個(gè)單項式的次數。
、垡粋(gè)多項式中,次數最高的項的次數叫做這個(gè)多項式的次數。
整式運算:加減運算時(shí),如果遇到括號先去括號,再合并同類(lèi)項。
冪的運算:am+an=a(m+n)
(am)n=amn
(a/b)n=an/bn除法一樣。
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數,相同字母的冪分別相乘,其余字母連同他的指數不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個(gè)多項式的每一項乘另外一個(gè)多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾検较喑,把系數,同底數冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數一起作為商的一個(gè)因式。
、诙囗検匠詥雾検,先把這個(gè)多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個(gè)多項式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:
、僬絘除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對于任何一個(gè)分式,分母不為0。
、诜质降姆肿优c分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。
初中數學(xué)知識點(diǎn):直線(xiàn)的位置與常數的關(guān)系
、賙>0則直線(xiàn)的傾斜角為銳角
、趉<0則直線(xiàn)的傾斜角為鈍角
、蹐D像越陡|k|越大
、躡>0直線(xiàn)與y軸的交點(diǎn)在x軸的上方
、輇<0直線(xiàn)與y軸的交點(diǎn)在x軸的下方
初中數學(xué)知識點(diǎn)總結9
常用數學(xué)公式
乘法與因式分a2-b2=(a+b)(a-b)
a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b
|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解x1=-b+√(b2-4ac)/2ax2=-b-√(b2-4ac)/2a
根與系數的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達定理
判別式
b2-4ac=0注:方程有兩個(gè)相等的實(shí)根b2-4ac>0注:方程有兩個(gè)不等的實(shí)根
b2-4ac
某些數列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑
余弦定理b2=a2+c2-2accosB注:角B是邊a和邊c的夾角
圓的標準方程(x-a)2+(y-b)2=r2注:(a,b)是圓心坐標圓的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0拋物線(xiàn)標準方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱側面積S=c*h斜棱柱側面積S=c"*h
正棱錐側面積S=1/2c*h"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l
弧長(cháng)公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長(cháng)柱體體積公式V=s*h圓柱體V=pi*r2h
1過(guò)兩點(diǎn)有且只有一條直線(xiàn)2兩點(diǎn)之間線(xiàn)段最短3同角或等角的補角相等4同角或等角的余角相等
5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直
6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短
7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9同位角相等,兩直線(xiàn)平行10內錯角相等,兩直線(xiàn)平行11同旁?xún)冉腔パa,兩直線(xiàn)平行12兩直線(xiàn)平行,同位角相等13兩直線(xiàn)平行,內錯角相等14兩直線(xiàn)平行,同旁?xún)冉腔パa
15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內角和定理三角形三個(gè)內角的和等于180°18推論1直角三角形的兩個(gè)銳角互余
19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內角的和20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內角21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個(gè)三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個(gè)三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個(gè)三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個(gè)三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個(gè)直角三角形全等27定理1在角的平分線(xiàn)上的點(diǎn)到這個(gè)角的兩邊的距離相等
28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線(xiàn)上29角的平分線(xiàn)是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線(xiàn)平分底邊并且垂直于底邊
32等腰三角形的頂角平分線(xiàn)、底邊上的中線(xiàn)和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35推論1三個(gè)角都相等的三角形是等邊三角形36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線(xiàn)等于斜邊上的一半
39定理線(xiàn)段垂直平分線(xiàn)上的點(diǎn)和這條線(xiàn)段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線(xiàn)段的垂直平分線(xiàn)上41線(xiàn)段的垂直平分線(xiàn)可看作和線(xiàn)段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線(xiàn)對稱(chēng)的兩個(gè)圖形是全等形
43定理2如果兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),那么對稱(chēng)軸是對應點(diǎn)連線(xiàn)的垂直平分線(xiàn)
44定理3兩個(gè)圖形關(guān)于某直線(xiàn)對稱(chēng),如果它們的對應線(xiàn)段或延長(cháng)線(xiàn)相交,那么交點(diǎn)在對稱(chēng)軸上
45逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)被同一條直線(xiàn)垂直平分,那么這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng)
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長(cháng)a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形48定理四邊形的內角和等于360°49四邊形的外角和等于360°
50多邊形內角和定理n邊形的內角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線(xiàn)間的平行線(xiàn)段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線(xiàn)互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線(xiàn)互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個(gè)角都是直角61矩形性質(zhì)定理2矩形的對角線(xiàn)相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形63矩形判定定理2對角線(xiàn)相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對角線(xiàn)互相垂直,并且每一條對角線(xiàn)平分一組對角66菱形面積=對角線(xiàn)乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線(xiàn)互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線(xiàn)相等,并且互相垂直平分,每條對角線(xiàn)平分一組對角
71定理1關(guān)于中心對稱(chēng)的兩個(gè)圖形是全等的
72定理2關(guān)于中心對稱(chēng)的`兩個(gè)圖形,對稱(chēng)點(diǎn)連線(xiàn)都經(jīng)過(guò)對稱(chēng)中心,并且被對稱(chēng)中心平分73逆定理如果兩個(gè)圖形的對應點(diǎn)連線(xiàn)都經(jīng)過(guò)某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱(chēng)
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等75等腰梯形的兩條對角線(xiàn)相等
76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形77對角線(xiàn)相等的梯形是等腰梯形
78平行線(xiàn)等分線(xiàn)段定理如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等
79推論1經(jīng)過(guò)梯形一腰的中點(diǎn)與底平行的直線(xiàn),必平分另一腰
80推論2經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn),必平分第三邊81三角形中位線(xiàn)定理三角形的中位線(xiàn)平行于第三邊,并且等于它的一半82梯形中位線(xiàn)定理梯形的中位線(xiàn)平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)
94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比
97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的集合
102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓
106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)
107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線(xiàn)
108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)
109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角
121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r
122切線(xiàn)的判定定理經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)
123切線(xiàn)的性質(zhì)定理圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑124推論1經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)125推論2經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心
126切線(xiàn)長(cháng)定理從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等130相交弦定理圓內的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(cháng)的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項
132切割線(xiàn)定理從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(cháng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(cháng)的比例中項
133推論從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(cháng)的積相等
134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線(xiàn)上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)
、軆蓤A內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理相交兩圓的連心線(xiàn)垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
、乓来芜B結各分點(diǎn)所得的多邊形是這個(gè)圓的內接正n邊形
、平(jīng)過(guò)各分點(diǎn)作圓的切線(xiàn),以相鄰切線(xiàn)的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內切圓,這兩個(gè)圓是同心圓139正n邊形的每個(gè)內角都等于(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長(cháng)142正三角形面積√3a/4a表示邊長(cháng)
143如果在一個(gè)頂點(diǎn)周?chē)衚個(gè)正n邊形的角,由于這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長(cháng)計算公式:L=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2146內公切線(xiàn)長(cháng)=d-(R-r)外公切線(xiàn)長(cháng)=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148平方差公式:(a+b)(a-b)=a^2-b^2
初中數學(xué)知識點(diǎn)總結10
知識點(diǎn)總結
1.定義:兩組對邊分別平行的四邊形叫平行四邊形
2.平行四邊形的性質(zhì)
。1)平行四邊形的對邊平行且相等;
。2)平行四邊形的鄰角互補,對角相等;
。3)平行四邊形的對角線(xiàn)互相平分;
3.平行四邊形的判定
平行四邊形是幾何中一個(gè)重要內容,如何根據平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對平行四邊形的五種判定方法,進(jìn)行劃分:
第一類(lèi):與四邊形的對邊有關(guān)
。1)兩組對邊分別平行的四邊形是平行四邊形;
。2)兩組對邊分別相等的四邊形是平行四邊形;
。3)一組對邊平行且相等的四邊形是平行四邊形;
第二類(lèi):與四邊形的對角有關(guān)
。4)兩組對角分別相等的四邊形是平行四邊形;
第三類(lèi):與四邊形的對角線(xiàn)有關(guān)
。5)對角線(xiàn)互相平分的四邊形是平行四邊形
常見(jiàn)考法
。1)利用平行四邊形的性質(zhì),求角度、線(xiàn)段長(cháng)、周長(cháng);
。2)求平行四邊形某邊的.取值范圍;
。3)考查一些綜合計算問(wèn)題;
。4)利用平行四邊形性質(zhì)證明角相等、線(xiàn)段相等和直線(xiàn)平行;
。5)利用判定定理證明四邊形是平行四邊形。
誤區提醒
。1)平行四邊形的性質(zhì)較多,易把對角線(xiàn)互相平分,錯記成對角線(xiàn)相等;
。2)“一組對邊平行且相等的四邊形是平行四邊形”錯記成“一組對邊平行,一組對邊相等的四邊形是平行四邊形”后者不是平行四邊形的判定定理,它只是個(gè)等腰梯形。
初中數學(xué)知識點(diǎn)總結11
第十一章三角形
一、知識框架:
二、知識概念:
1.三角形:由不在同一直線(xiàn)上的三條線(xiàn)段首尾順次相接所組成的圖形叫做三角形.
2.三邊關(guān)系:三角形任意兩邊的和(大于或小于)第三邊,任意兩邊的差(大于或小于)第三邊.
3.高:從三角形的一個(gè)頂點(diǎn)向它的對邊所在直線(xiàn)作,頂點(diǎn)和間的線(xiàn)段叫做三角形的高.4.中線(xiàn):在三角形中,連接一個(gè)頂點(diǎn)和它對邊的線(xiàn)段叫做三角形的中線(xiàn).
5.角平分線(xiàn):三角形的一個(gè)內角的平分線(xiàn)與這個(gè)角的對邊相交,這個(gè)角的頂點(diǎn)和之間的線(xiàn)段叫做三角形的角平分線(xiàn).
6.三角形的穩定性:三角形的形狀是,三角形的這個(gè)性質(zhì)叫三角形的穩定性.
7.多邊形:在平面內,由一些線(xiàn)段首尾順次相接組成的圖形叫做多邊形.
8.多邊形的內角:多邊形兩邊組成的角叫做它的內角.
9.多邊形的外角:多邊形的一邊與它的鄰邊的線(xiàn)組成的角叫做多邊形的外角.
10.多邊形的對角線(xiàn):連接多邊形的兩個(gè)頂點(diǎn)的線(xiàn)段,叫做多邊形的對角線(xiàn).
11.正多邊形:在平面內,各個(gè)角都相等,各條邊都相等的多邊形叫正多邊形.
12.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
13.公式與性質(zhì):
、湃切蔚膬冉呛停喝切蔚膬冉呛蜑槎。
、迫切瓮饨堑男再|(zhì):
性質(zhì)1:三角形的一個(gè)外角等于和它不相鄰的的和.
性質(zhì)2:三角形的一個(gè)外角大于任何一個(gè)和它的內角.
、嵌噙呅蝺冉呛凸剑簄邊形的內角和等于。
學(xué)無(wú)慮課后輔導中心編制
、榷噙呅蔚耐饨呛停憾噙呅蔚耐饨呛蜑槎.
、啥噙呅螌蔷(xiàn)的條數:
、購膎邊形的一個(gè)頂點(diǎn)出發(fā)可以引條對角線(xiàn),把多邊形分成個(gè)三角形.
、趎邊形共有條對角線(xiàn).
第十二章全等三角形
一、知識框架:
二、知識概念:
1.基本定義:
、湃刃危耗軌蛲耆膬蓚(gè)圖形叫做全等形.
、迫热切危耗軌蛲耆膬蓚(gè)三角形叫做全等三角形.
、菍旤c(diǎn):全等三角形中互相的頂點(diǎn)叫做對應頂點(diǎn).
、葘叄喝热切沃谢ハ嗟倪吔凶鰧.
、蓪牵喝热切沃谢ハ嗟慕墙凶鰧.
2.基本性質(zhì):
、湃切蔚姆定性:三角形三邊的確定了,這個(gè)三角形的形狀、大小就全確定,這個(gè)性質(zhì)叫做三角形的穩定性.
、迫热切蔚男再|(zhì):全等三角形的相等,對應角相等.
3.全等三角形的判定定理:
、胚呥呥叄⊿SS):。
、七吔沁叄⊿AS):。
、墙沁吔牵ˋSA):。
、冉墙沁叄ˋAS):。
、尚边、直角邊(HL):。
4.角平分線(xiàn):⑴畫(huà)法:⑵性質(zhì)定理:角平分線(xiàn)上的點(diǎn)到角的兩邊的距離.⑶性質(zhì)定理的逆定理:角的內部到角的兩邊距離相等的點(diǎn)在角的上.
5.證明的基本方法:
、琶鞔_命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線(xiàn)、中線(xiàn)、高、等腰三角形等所隱含的邊角關(guān)系)⑵根據題意,畫(huà)出圖形,并用數字符號表示已知和求證.⑶經(jīng)過(guò)分析,找出由已知推出求證的途徑,寫(xiě)出證明過(guò)程.
第十三章軸對稱(chēng)
一、知識框架:
二、知識概念:
1.基本概念:
、泡S對稱(chēng)圖形:如果一個(gè)圖形沿一條直線(xiàn)折疊,直線(xiàn)兩旁的部分能夠互相,這個(gè)圖形就叫做軸對稱(chēng)圖形.
、苾蓚(gè)圖形成軸對稱(chēng):把一個(gè)圖形沿某一條直線(xiàn)折疊,如果它能夠與另一個(gè)圖形重合,那么就說(shuō)這兩個(gè)圖形關(guān)于這條直線(xiàn)對稱(chēng).⑶線(xiàn)段的垂直平分線(xiàn):經(jīng)過(guò)線(xiàn)段中點(diǎn)并且這條線(xiàn)段的直線(xiàn),叫做這條線(xiàn)段的垂直平分線(xiàn).
、鹊妊切危河袃蓷l邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
、傻冗吶切危憾枷嗟鹊娜切谓凶龅冗吶切.2.基本性質(zhì):⑴對稱(chēng)的性質(zhì):①不管是軸對稱(chēng)圖形還是兩個(gè)圖形關(guān)于某條直線(xiàn)對稱(chēng),對稱(chēng)軸都是任何一對對應點(diǎn)所連線(xiàn)段的垂直平分線(xiàn).②對稱(chēng)的圖形都全等.⑵線(xiàn)段垂直平分線(xiàn)的性質(zhì):①線(xiàn)段垂直平分線(xiàn)上的點(diǎn)與這條線(xiàn)段的距離相等.②與一條線(xiàn)段兩個(gè)端點(diǎn)距離相等的點(diǎn)在這條線(xiàn)段的上.⑶關(guān)于坐標軸對稱(chēng)的點(diǎn)的坐標性質(zhì)①點(diǎn)P(x,y)關(guān)于x軸對稱(chēng)的點(diǎn)的坐標為P"(,).②點(diǎn)P(x,y)關(guān)于y軸對稱(chēng)的點(diǎn)的坐標為P"(,).⑷等腰三角形的性質(zhì):
、俚妊切蝺裳.
、诘妊切蝺傻捉窍嗟龋ǖ冗厡Φ冉牵.
、鄣妊切蔚、,相互重合.④等腰三角形是圖形,對稱(chēng)軸是三線(xiàn)合一(1條).⑸等邊三角形的'性質(zhì):
、俚冗吶切稳叾枷嗟.
、诘冗吶切稳齻(gè)內角都相等,都等于度。③等邊三角形每條邊上都存在三線(xiàn)合一.
、艿冗吶切问禽S對稱(chēng)圖形,對稱(chēng)軸是三線(xiàn)合一(3條).3.基本判定:
、诺妊切蔚呐卸ǎ
、傧嗟鹊娜切问堑妊切.
、谌绻粋(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也(等角對等邊).
、频冗吶切蔚呐卸ǎ
、俣枷嗟鹊娜切问堑冗吶切.②三個(gè)角都相等的三角形是三角形.
、塾幸粋(gè)角是度。的等腰三角形是等邊三角形.
4.基本方法:
、抛鲆阎本(xiàn)的垂線(xiàn):
、谱鲆阎(xiàn)段的垂直平分線(xiàn):
、亲鲗ΨQ(chēng)軸:連接兩個(gè)對應點(diǎn),作所連線(xiàn)段的垂直平分線(xiàn).
、茸饕阎獔D形關(guān)于某直線(xiàn)的對稱(chēng)圖形:
、稍谥本(xiàn)上做一點(diǎn),使它到該直線(xiàn)同側的兩個(gè)已知點(diǎn)的距離之和最短.
第十四章整式的乘除與分解因式
一、知識框架:
整式乘法乘法法則整式除法因式分解
二、知識概念:
基本運算:⑴同底數冪的乘法公式:。⑵冪的乘方公式:。⑶積的乘方公式:。
2.整式的乘法:⑴單項式單項式:系數,同字母,不同字母為積的因式.⑵單項式多項式:。⑶多項式多項式:.
3.計算公式:
、牌椒讲罟剑篴babab
222222⑵完全平方公式:aba2abb;aba2abb
224.整式的除法:
、磐讛祪绲某ǎ篴aamnmn
、茊雾検絾雾検剑合禂,同字母,不同字母作為商的因式.⑶多項式單項式:.⑷多項式多項式:用豎式.
5.因式分解:把一個(gè)多項式化成的積的形式,這種變形叫做把這個(gè)式子因式分解.
6.因式分解方法:
、盘峁蚴椒ǎ赫页鲎畲蠊蚴.⑵公式法:①平方差公式:。②完全平方公式:。③立方和:。④立方差:。⑶十字相乘法:。⑷拆項法⑸添項法第十五章分式一、知識框架:
二、知識概念:A1.分式:形如,A、B是整式,B中含有字母且B不等于的整式叫做分式.其中AB叫做分式的,B叫做分式的2.分式有意義的條件:分母不等于.3.分式的基本性質(zhì):分式的分子和分母同時(shí)乘以(或除以)同一個(gè)不為的整式,分式的值不變.4.約分:把一個(gè)分式的分子和分母的(不為1的數)約去,這種變形稱(chēng)為約分.5.通分:異分母的分式可以化成的分式,這一過(guò)程叫做通分.
6.最簡(jiǎn)分式:一個(gè)分式的分子和分母沒(méi)有時(shí),這個(gè)分式稱(chēng)為最簡(jiǎn)分式,約分時(shí),一般將一個(gè)分式化為最簡(jiǎn)分式.7.分式的四則運算:
、磐帜阜质郊訙p法則:同分母的分式相加減,分母,把相加減.用字
母表示
為:。
、飘惙帜阜质郊訙p法則:異分母的分式相加減,先,化為同分母的分
式,然后再按同分母分式的加減法法則進(jìn)行計算.用字母表示為:。
、欠质降某朔ǚ▌t:兩個(gè)分式相乘,把相乘的積作為積的分子,把相乘的積作為積的分母.用字母表示為:。
、确质降某ǚ▌t:兩個(gè)分式相除,把除式的和顛倒位置后再與被除式相乘.用字母表示為:。⑸分式的乘方法則:、分別乘方.用字母表示為:。8.整數指數冪:⑴aaam⑵amnmn(m、n是正整數)namn(m、n是正整數)nn⑶abab(n是正整數)n⑷aaanmnmn(a0,m、n是正整數,mn)ana⑸n(n是正整數)bb⑹an1(a0,n是正整數)na9.分式方程的意義:分母中含有未知數的方程叫做分式方程.10.分式方程的解法:
、(方程兩邊同時(shí)乘以最簡(jiǎn)公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;
、(求出未知數的值后必須驗根,因為在把分式方程化為整式方程的過(guò)程中,擴大了未知數的取值范圍,可能產(chǎn)生增根).
初中數學(xué)知識點(diǎn)總結12
一、在創(chuàng )新中培養學(xué)生的歸納意?R
在初中數學(xué)教學(xué)中,重點(diǎn)是對學(xué)生的創(chuàng )新精神和實(shí)踐能力的培養,體現出現代素質(zhì)教育。學(xué)生創(chuàng )新能力的培養在學(xué)習中占據非常重要的作用,在創(chuàng )新中學(xué)生可以鞏固自身所學(xué)的知識,使數學(xué)知識在自己的頭腦中根深蒂固,各類(lèi)知識點(diǎn)在學(xué)生的頭腦中形成清晰的框架,有助于學(xué)生歸納意識的培養。歸納意識的培養,可以減輕學(xué)生的學(xué)習負擔,提升學(xué)生對知識的理解能力。
初中生在學(xué)習數學(xué)的環(huán)節中,常常會(huì )接觸到大量的圖像,在數學(xué)學(xué)習中,老師應該鼓勵學(xué)生大膽創(chuàng )新,在創(chuàng )新環(huán)節中完成對知識點(diǎn)的歸納。數學(xué)學(xué)習并不死板,不僅僅學(xué)習教科書(shū)上的知識,還應該學(xué)習書(shū)本以外的知識,從而創(chuàng )新自己的思維。例如在進(jìn)行函數的.學(xué)習中,老師可以讓學(xué)生繪制函數圖像,對函數進(jìn)行分類(lèi)討論,從而掌握遞增函數和遞減函數的定義,在分類(lèi)討論后,學(xué)生結合圖像進(jìn)行歸納。在數學(xué)教學(xué)中,老師不僅僅要重視書(shū)本上的邏輯內容,而且在把握邏輯內容的基礎上,將圖像和數學(xué)知識有機結合起來(lái),使學(xué)生可以大膽創(chuàng )新。
很多學(xué)生在數學(xué)學(xué)習中存在困難,認為數學(xué)的學(xué)習就是解答大量的難題,他們在大量的題海戰術(shù)后不善于歸納,導致數學(xué)學(xué)習的效率不高。
二、在交流中歸納知識點(diǎn)
在數學(xué)學(xué)習中,如果學(xué)生只是自己探究,那么在學(xué)習中不會(huì )得到靈感。數學(xué)學(xué)習不僅僅要求學(xué)生具有認真的鉆研態(tài)度,而且也需要老師幫助學(xué)生養成歸納的意識。溝通和交流不僅僅在語(yǔ)言的學(xué)習中發(fā)揮非常重要的作用,而且在數學(xué)學(xué)習中同樣非常重要。學(xué)生在解答數學(xué)問(wèn)題中,常常會(huì )遇到一些問(wèn)題,學(xué)生自己探究會(huì )陷入到死胡同中,需要老師和同學(xué)的幫助才能進(jìn)一步完成。
為了切實(shí)在初中數學(xué)教學(xué)中培養學(xué)生的歸納意識,老師可以將班級內的學(xué)生分成幾個(gè)不同的小組,組內的同學(xué)可以通過(guò)合作的方式,對知識點(diǎn)進(jìn)行歸納,在數學(xué)的學(xué)習中更加變通,將數學(xué)這門(mén)學(xué)科應用到生活中。
例如,在進(jìn)行二次函數的學(xué)習中,老師可以將學(xué)生分成不同的小組,留給學(xué)生充足的時(shí)間,讓他們互相幫助,在溝通中對知識點(diǎn)進(jìn)行歸納。學(xué)生很快就能得到結論,如果函數有兩個(gè)解,那么函數與數軸會(huì )有兩個(gè)交點(diǎn),如果方程只有一個(gè)解,那么函數與數軸只有一個(gè)交點(diǎn),如果方程沒(méi)有解,那么函數與數軸沒(méi)有交點(diǎn)。學(xué)生通過(guò)分組討論的方式得到結論,通過(guò)歸納,學(xué)生對二次函數知識點(diǎn)的印象非常深刻。
三、學(xué)會(huì )正確歸納
在數學(xué)學(xué)習中,歸納思想非常重要,數學(xué)這門(mén)學(xué)科的知識非常細碎,是一門(mén)系統性很強的學(xué)科。數學(xué)知識錯綜復雜,很多學(xué)生在學(xué)習數學(xué)中力不從心,掌握合理的歸納方式,可以切實(shí)提升學(xué)生的數學(xué)成績(jì)。初中生的思維還不是特別完善,在進(jìn)行數學(xué)學(xué)習環(huán)節中,對知識點(diǎn)進(jìn)行合理的歸納,是每位老師應該采取的方法。如果學(xué)生不懂得歸納,那么在數學(xué)考試中,學(xué)生會(huì )將知識點(diǎn)混淆。為了提升學(xué)生的歸納能力,老師在課堂上應該將一些容易混淆和容易出現錯誤的習題讓學(xué)生總結。
例如,在學(xué)習圓和直線(xiàn)這部分內容中,老師都會(huì )將重點(diǎn)內容,圓和圓的位置關(guān)系,直線(xiàn)和圓的位置關(guān)系進(jìn)行重點(diǎn)分析。老師可以借助一些參考書(shū)目和資料,總結一些相似的題目,讓學(xué)生在課堂上解答這些題目,使學(xué)生對這部分知識點(diǎn)進(jìn)行總結,從而加深對這部分知識的理解。歸納思想在數學(xué)學(xué)習中應用非常多,在進(jìn)行初中數學(xué)教學(xué)環(huán)節中,學(xué)生應該花更多的時(shí)間進(jìn)行歸納。
在進(jìn)行初中數學(xué)的學(xué)習中,學(xué)生歸納意識的養成可以完善學(xué)生的數學(xué)思維,學(xué)生學(xué)會(huì )歸納,在學(xué)習中就會(huì )如魚(yú)得水,在考試中取得好成績(jì)。
四、在反思中完成知識點(diǎn)的歸納
初中數學(xué)知識點(diǎn)總結13
誘導公式的本質(zhì)
所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函數的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的'三角函數值與的三角函數值之間的關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
初中數學(xué)知識點(diǎn)總結14
直線(xiàn)、射線(xiàn)、線(xiàn)段
。1)直線(xiàn)、射線(xiàn)、線(xiàn)段的表示方法
、僦本(xiàn):用一個(gè)小寫(xiě)字母表示,如:直線(xiàn)l,或用兩個(gè)大寫(xiě)字母(直線(xiàn)上的)表示,如直線(xiàn)AB。
、谏渚(xiàn):是直線(xiàn)的一部分,用一個(gè)小寫(xiě)字母表示,如:射線(xiàn)l;用兩個(gè)大寫(xiě)字母表示,端點(diǎn)在前,如:射線(xiàn)OA。注意:用兩個(gè)字母表示時(shí),端點(diǎn)的字母放在前邊。
、劬(xiàn)段:線(xiàn)段是直線(xiàn)的一部分,用一個(gè)小寫(xiě)字母表示,如線(xiàn)段a;用兩個(gè)表示端點(diǎn)的字母表示,如:線(xiàn)段AB(或線(xiàn)段BA)。
。2)點(diǎn)與直線(xiàn)的位置關(guān)系:
、冱c(diǎn)經(jīng)過(guò)直線(xiàn),說(shuō)明點(diǎn)在直線(xiàn)上;
、邳c(diǎn)不經(jīng)過(guò)直線(xiàn),說(shuō)明點(diǎn)在直線(xiàn)外。
兩點(diǎn)間的距離
。1)兩點(diǎn)間的距離:連接兩點(diǎn)間的線(xiàn)段的長(cháng)度叫兩點(diǎn)間的距離。
。2)平面上任意兩點(diǎn)間都有一定距離,它指的是連接這兩點(diǎn)的線(xiàn)段的長(cháng)度,學(xué)習此概念時(shí),注意強調最后的'兩個(gè)字“長(cháng)度”,也就是說(shuō),它是一個(gè)量,有大小,區別于線(xiàn)段,線(xiàn)段是圖形。線(xiàn)段的長(cháng)度才是兩點(diǎn)的距離?梢哉f(shuō)畫(huà)線(xiàn)段,但不能說(shuō)畫(huà)距離。
正方體
。1)對于此類(lèi)問(wèn)題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開(kāi)圖理解的基礎上直接想象。
。2)從實(shí)物出發(fā),結合具體的問(wèn)題,辨析幾何體的展開(kāi)圖,通過(guò)結合立體圖形與平面圖形的轉化,建立空間觀(guān)念,是解決此類(lèi)問(wèn)題的關(guān)鍵。
。3)正方體的展開(kāi)圖有11種情況,分析平面展開(kāi)圖的各種情況后再認真確定哪兩個(gè)面的對面。
初中數學(xué)知識點(diǎn)總結15
1 圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2 垂直于弦的直徑
圓是軸對稱(chēng)圖形,任何一條直徑所在的直線(xiàn)都是它的對稱(chēng)軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條;
平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3 弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4 圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5 點(diǎn)和圓的位置關(guān)系
點(diǎn)在圓外
點(diǎn)在圓上 d=r
點(diǎn)在圓內 d
定理:不在同一條直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。
三角形的外接圓:經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓,外接圓的圓心是三角形的三條邊的垂直平分線(xiàn)的交點(diǎn),叫做三角形的外心。
6直線(xiàn)和圓的位置關(guān)系
相交 d
相切 d=r
相離 d>r
切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于過(guò)切點(diǎn)的半徑;
切線(xiàn)的判定定理:經(jīng)過(guò)圓的`外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn);
切線(xiàn)長(cháng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(cháng)相等,這一點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線(xiàn)的交點(diǎn),為三角形的內心。
7 圓和圓的位置關(guān)系
外離 d>R+r
外切 d=R+r
相交 R-r
內切 d=R-r
內含 d
8 正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒(méi)邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
【初中數學(xué)知識點(diǎn)總結】相關(guān)文章:
初中數學(xué)知識點(diǎn)總結05-30
初中數學(xué)知識點(diǎn)總結03-07
初中數學(xué)知識點(diǎn)總結10-24