成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

函數知識點(diǎn)總結

時(shí)間:2024-09-18 16:12:38 知識點(diǎn)總結 我要投稿

函數知識點(diǎn)總結(優(yōu)秀15篇)

  總結在一個(gè)時(shí)期、一個(gè)年度、一個(gè)階段對學(xué)習和工作生活等情況加以回顧和分析的一種書(shū)面材料,它能夠給人努力工作的動(dòng)力,我想我們需要寫(xiě)一份總結了吧。那么總結應該包括什么內容呢?下面是小編精心整理的函數知識點(diǎn)總結,僅供參考,希望能夠幫助到大家。

函數知識點(diǎn)總結(優(yōu)秀15篇)

函數知識點(diǎn)總結1

  高一數學(xué)第三章函數的應用知識點(diǎn)總結

  一、方程的根與函數的零點(diǎn)

  1、函數零點(diǎn)的概念:對于函數yf(x)(xD),把使f(x)0成立的實(shí)數x叫做函數yf(x)(xD)的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數yf(x)的零點(diǎn)就是方程f(x)0實(shí)數根,亦即函數

  yf(x)的圖象與x軸交點(diǎn)的橫坐標。

  即:方程f(x)0有實(shí)數根函數yf(x)的圖象與x軸有交點(diǎn)函數yf(x)有零點(diǎn).

  3、函數零點(diǎn)的求法:

  1(代數法)求方程f(x)0的實(shí)數根;○

  2(幾何法)對于不能用求根公式的方程,可以將它與函數yf(x)的圖象○

  聯(lián)系起來(lái),并利用函數的性質(zhì)找出零點(diǎn).

  零點(diǎn)存在性定理:如果函數y=f(x)在區間〔a,b〕上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。先判定函數單調性,然后證明是否有f(a)f(b)第三章函數的應用習題

  一、選擇題

  1.下列函數有2個(gè)零點(diǎn)的是()

  222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計算3x3x80在x(1,2)內的根的過(guò)程中得:f(1)0,f(1.5)0,

  f(1.25)0,則方程的根落在區間()

  A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)

  3.若方程axxa0有兩個(gè)解,則實(shí)數a的取值范圍是A、(1,)B、(0,1)C、(0,)D、

  4.函數f(x)=lnx-2x的零點(diǎn)所在的大致區間是()A.(1,2)B.2,eC.e,3D.e,

  5.已知方程x3x10僅有一個(gè)正零點(diǎn),則此零點(diǎn)所在的區間是()

  A.(3,4)B.(2,3)C.(1,2)D.(0,1)

  6.函數f(x)lnx2x6的零點(diǎn)落在區間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)

  7.已知函數

  fx的圖象是不間斷的,并有如下的對應值表:x1234567fx8735548那么函數在區間(1,6)上的零點(diǎn)至少有()個(gè)A.5B.4C.3D.28.方程2x1x5的解所在的區間是A(0,1)B(1,2)C(2,3)D(3,4)

  9.方程4x35x60的根所在的區間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)

  10.已知f(x)2x22x,則在下列區間中,f(x)0有實(shí)數解的是()

 。

 。ǎ

 。ǎ

 。(A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據表格中的數據,可以判定方程ex-x-2=0的一個(gè)根所在的區間為()

  xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程

  x12x根的個(gè)數為()

  A、0B、1C、2D、3二、填空題

  13.下列函數:1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個(gè)零點(diǎn)的函數的序號是。

  x214.若方程3x2的實(shí)根在區間m,n內,且m,nZ,nm1,

  x則mn.

  222f(x)(x1)(x2)(x2x3)的零點(diǎn)是15、函數(必須寫(xiě)全所有的零點(diǎn))。

  擴展閱讀:高中數學(xué)必修一第三章函數的應用知識點(diǎn)總結

  第三章函數的應用

  一、方程的根與函數的零點(diǎn)

  1、函數零點(diǎn)的概念:對于函數yf(x)(xD),把使f(x)0成立的實(shí)數x叫做函數yf(x)(xD)的零點(diǎn)。

  2、函數零點(diǎn)的意義:函數yf(x)的零點(diǎn)就是方程f(x)0實(shí)數根,亦即函數

  yf(x)的圖象與x軸交點(diǎn)的橫坐標。

  即:方程f(x)0有實(shí)數根函數yf(x)的`圖象與x軸有交點(diǎn)函數yf(x)有零點(diǎn).

  3、函數零點(diǎn)的求法:

  1(代數法)求方程f(x)0的實(shí)數根;○

  2(幾何法)對于不能用求根公式的方程,可以將它與函數yf(x)的圖象聯(lián)系起來(lái),○

  并利用函數的性質(zhì)找出零點(diǎn).

  4、基本初等函數的零點(diǎn):

 、僬壤瘮祔kx(k0)僅有一個(gè)零點(diǎn)。

  k(k0)沒(méi)有零點(diǎn)。x③一次函數ykxb(k0)僅有一個(gè)零點(diǎn)。

 、诜幢壤瘮祔④二次函數yax2bxc(a0).

 。1)△>0,方程ax2bxc0(a0)有兩不等實(shí)根,二次函數的圖象與x軸有兩個(gè)交點(diǎn),二次函數有兩個(gè)零點(diǎn).

 。2)△=0,方程ax2bxc0(a0)有兩相等實(shí)根,二次函數的圖象與x軸有一個(gè)交點(diǎn),二次函數有一個(gè)二重零點(diǎn)或二階零點(diǎn).

 。3)△<0,方程ax2bxc0(a0)無(wú)實(shí)根,二次函數的圖象與x軸無(wú)交點(diǎn),二次函數無(wú)零點(diǎn).

 、葜笖岛瘮祔a(a0,且a1)沒(méi)有零點(diǎn)。⑥對數函數ylogax(a0,且a1)僅有一個(gè)零點(diǎn)1.

 、邇绾瘮祔x,當n0時(shí),僅有一個(gè)零點(diǎn)0,當n0時(shí),沒(méi)有零點(diǎn)。

  5、非基本初等函數(不可直接求出零點(diǎn)的較復雜的函數),函數先把fx轉化成,這另fx0,再把復雜的函數拆分成兩個(gè)我們常見(jiàn)的函數y1,y2(基本初等函數)個(gè)函數圖像的交點(diǎn)個(gè)數就是函數fx零點(diǎn)的個(gè)數。

  6、選擇題判斷區間a,b上是否含有零點(diǎn),只需滿(mǎn)足fafb0。Eg:試判斷方程xx2x10在區間[0,2]內是否有實(shí)數解?并說(shuō)明理由。

  1

  42x7、確定零點(diǎn)在某區間a,b個(gè)數是唯一的條件是:①fx在區間上連續,且fafb0②在區間a,b上單調。Eg:求函數f(x)2xlg(x1)2的零點(diǎn)個(gè)數。

  8、函數零點(diǎn)的性質(zhì):

  從“數”的角度看:即是使f(x)0的實(shí)數;

  從“形”的角度看:即是函數f(x)的圖象與x軸交點(diǎn)的橫坐標;

  若函數f(x)的圖象在xx0處與x軸相切,則零點(diǎn)x0通常稱(chēng)為不變號零點(diǎn);若函數f(x)的圖象在xx0處與x軸相交,則零點(diǎn)x0通常稱(chēng)為變號零點(diǎn).

  Eg:一元二次方程根的分布討論

  一元二次方程根的分布的基本類(lèi)型

  2axbxc0(a0)的兩實(shí)根為x1,x2,且x1x2.設一元二次方程

  k為常數,則一元二次方程根的k分布(即x1,x2相對于k的位置)或根在區間上的

  分布主要有以下基本類(lèi)型:

  表一:(兩根與0的大小比較)

  分布情況兩個(gè)負根即兩根都小于0兩個(gè)正根即兩根都大于0一正根一負根即一個(gè)根小于0,一個(gè)大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結論0b02af000b02af00f00

  大致圖象(a0)得出的結論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結a論)

  af00表二:(兩根與k的大小比較)

  分布情況兩根都小于k即兩根都大于k即一個(gè)根小于k,一個(gè)大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結a論)a0)afk0分布情況大致圖象(得出的結論表三:(根在區間上的分布)

  兩根都在m,n內兩根有且僅有一根在m,n一根在m,n內,另一根在p,q內(有兩種情況,只畫(huà)了一種)內,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或

  大致圖象(a0)得出的結論0fm0fn0bmn2a綜合結論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論

  fmfn0Eg:(1)關(guān)于x的方程x22(m3)x2m140有兩個(gè)實(shí)根,且一個(gè)大于1,一個(gè)小于1,求m的取值范圍?

 。2)關(guān)于x的方程x2(m3)x2m140有兩實(shí)根在[0,4]內,求m的取值范圍?

  2(3)關(guān)于x的方程mx2(m3)x2m140有兩個(gè)實(shí)根,且一個(gè)大于4,一個(gè)小于4,求m的取值范圍?

  9、二分法的定義

  對于在區間[a,b]上連續不斷,且滿(mǎn)足f(a)f(b)0的函數

  yf(x),通過(guò)不斷地把函數f(x)的零點(diǎn)所在的區間一分為二,

  使區間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法.

  10、給定精確度ε,用二分法求函數f(x)零點(diǎn)近似值的步驟:(1)確定區間[a,b],驗證f(a)f(b)0,給定精度;(2)求區間(a,b)的中點(diǎn)x1;(3)計算f(x1):

 、偃鬴(x1)=0,則x1就是函數的零點(diǎn);

 、谌鬴(a)f(x1)14、根據散點(diǎn)圖設想比較接近的可能的函數模型:一次函數模型:f(x)kxb(k0);二次函數模型:g(x)ax2bxc(a0);冪函數模型:h(x)axb(a0);

  指數函數模型:l(x)abxc(a0,b>0,b1)

  利用待定系數法求出各解析式,并對各模型進(jìn)行分析評價(jià),選出合適的函數模型

函數知識點(diǎn)總結2

  ∴當x1時(shí)函數取得最大值,且ymax(1)2(1)13例4、已知函數f(x)x22(a1)x2

  4],求實(shí)數a的取值(1)若函數f(x)的遞減區間是(,4]上是減函數,求實(shí)數a的取值范圍(2)若函數f(x)在區間(,分析:二次函數的單調區間是由其開(kāi)口方向及對稱(chēng)軸決定的,要分清函數在區間A上是單調函數及單調區間是A的區別與聯(lián)系

  解:(1)f(x)的對稱(chēng)軸是x可得函數圖像開(kāi)口向上

  2(a1)21a,且二次項系數為1>0

  1a]∴f(x)的單調減區間為(,∴依題設條件可得1a4,解得a3

  4]上是減函數(2)∵f(x)在區間(,4]是遞減區間(,1a]的子區間∴(,∴1a4,解得a3

  例5、函數f(x)x2bx2,滿(mǎn)足:f(3x)f(3x)

 。1)求方程f(x)0的兩根x1,x2的和(2)比較f(1)、f(1)、f(4)的大小解:由f(3x)f(3x)知函數圖像的對稱(chēng)軸為x(3x)(3x)23

  b3可得b62f(x)x26x2(x3)211

  而f(x)的圖像與x軸交點(diǎn)(x1,0)、(x2,0)關(guān)于對稱(chēng)軸x3對稱(chēng)

  x1x223,可得x1x26

  第三章第32頁(yè)由二次項系數為1>0,可知拋物線(xiàn)開(kāi)口向上又134,132,431

  ∴依二次函數的對稱(chēng)性及單調性可f(4)f(1)f(1)(III)課后作業(yè)練習六

 。á簦┙虒W(xué)后記:

  第三章第33頁(yè)

  擴展閱讀:初中數學(xué)函數知識點(diǎn)歸納

  學(xué)大教育

  初中數學(xué)函數板塊的'知識點(diǎn)總結與歸類(lèi)學(xué)習方法

  初中數學(xué)知識大綱中,函數知識占了很大的知識體系比例,學(xué)好了函數,掌握了函數的基本性質(zhì)及其應用,真正精通了函數的每一個(gè)模塊知識,會(huì )做每一類(lèi)函數題型,就讀于中考中數學(xué)成功了一大半,數學(xué)成績(jì)自然上高峰,同時(shí),函數的思想是學(xué)好其他理科類(lèi)學(xué)科的基礎。初中數學(xué)從性質(zhì)上分,可以分為:一次函數、反比例函數、二次函數和銳角三角函數,下面介紹各類(lèi)函數的定義、基本性質(zhì)、函數圖象及函數應用思維方式方法。

  一、一次函數

  1.定義:在定義中應注意的問(wèn)題y=kx+b中,k、b為常數,且k≠0,x的指數一定為1。2.圖象及其性質(zhì)(1)形狀、直線(xiàn)

函數知識點(diǎn)總結3

 。ㄒ唬、映射、函數、反函數

  1、對應、映射、函數三個(gè)概念既有共性又有區別,映射是一種特殊的對應,而函數又是一種特殊的映射。

  2、對于函數的概念,應注意如下幾點(diǎn):

 。1)掌握構成函數的三要素,會(huì )判斷兩個(gè)函數是否為同一函數。

 。2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問(wèn)題尋求變量間的函數關(guān)系式,特別是會(huì )求分段函數的解析式。

 。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復合函數,其中g(shù)(x)為內函數,f(u)為外函數。

  3、求函數y=f(x)的反函數的一般步驟:

 。1)確定原函數的值域,也就是反函數的定義域;

 。2)由y=f(x)的解析式求出x=f—1(y);

 。3)將x,y對換,得反函數的習慣表達式y=f—1(x),并注明定義域。

  注意:

 、賹τ诜侄魏瘮档姆春瘮,先分別求出在各段上的反函數,然后再合并到一起。

 、谑煜さ膽,求f—1(x0)的值,合理利用這個(gè)結論,可以避免求反函數的過(guò)程,從而簡(jiǎn)化運算。

 。ǘ、函數的解析式與定義域

  1、函數及其定義域是不可分割的整體,沒(méi)有定義域的函數是不存在的,因此,要正確地寫(xiě)出函數的解析式,必須是在求出變量間的對應法則的同時(shí),求出函數的定義域。求函數的定義域一般有三種類(lèi)型:

 。1)有時(shí)一個(gè)函數來(lái)自于一個(gè)實(shí)際問(wèn)題,這時(shí)自變量x有實(shí)際意義,求定義域要結合實(shí)際意義考慮;

 。2)已知一個(gè)函數的解析式求其定義域,只要使解析式有意義即可。如:

 、俜质降姆帜覆坏脼榱;

 、谂即畏礁谋婚_(kāi)方數不小于零;

 、蹖岛瘮档恼鏀当仨毚笥诹;

 、苤笖岛瘮岛蛯岛瘮档牡讛当仨毚笥诹闱也坏扔1;

 、萑呛瘮抵械恼泻瘮祔=tanx(x∈R,且k∈Z),余切函數y=cotx(x∈R,x≠kπ,k∈Z)等。

  應注意,一個(gè)函數的解析式由幾部分組成時(shí),定義域為各部分有意義的自變量取值的公共部分(即交集)。

 。3)已知一個(gè)函數的定義域,求另一個(gè)函數的定義域,主要考慮定義域的深刻含義即可。

  已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿(mǎn)足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域。

  2、求函數的解析式一般有四種情況

 。1)根據某實(shí)際問(wèn)題需建立一種函數關(guān)系時(shí),必須引入合適的變量,根據數學(xué)的有關(guān)知識尋求函數的解析式。

 。2)有時(shí)題設給出函數特征,求函數的解析式,可采用待定系數法。比如函數是一次函數,可設f(x)=ax+b(a≠0),其中a,b為待定系數,根據題設條件,列出方程組,求出a,b即可。

 。3)若題設給出復合函數f[g(x)]的表達式時(shí),可用換元法求函數f(x)的表達式,這時(shí)必須求出g(x)的值域,這相當于求函數的定義域。

 。4)若已知f(x)滿(mǎn)足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。

 。ㄈ、函數的值域與最值

  1、函數的值域取決于定義域和對應法則,不論采用何種方法求函數值域都應先考慮其定義域,求函數值域常用方法如下:

 。1)直接法:亦稱(chēng)觀(guān)察法,對于結構較為簡(jiǎn)單的函數,可由函數的解析式應用不等式的性質(zhì),直接觀(guān)察得出函數的值域。

 。2)換元法:運用代數式或三角換元將所給的復雜函數轉化成另一種簡(jiǎn)單函數再求值域,若函數解析式中含有根式,當根式里一次式時(shí)用代數換元,當根式里是二次式時(shí),用三角換元。

 。3)反函數法:利用函數f(x)與其反函數f—1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數的定義域而得到原函數的值域,形如(a≠0)的函數值域可采用此法求得。

 。4)配方法:對于二次函數或二次函數有關(guān)的函數的值域問(wèn)題可考慮用配方法。

 。5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數的值域,不過(guò)應注意條件“一正二定三相等”有時(shí)需用到平方等技巧。

 。6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。

 。7)利用函數的單調性求值域:當能確定函數在其定義域上(或某個(gè)定義域的子集上)的單調性,可采用單調性法求出函數的值域。

 。8)數形結合法求函數的值域:利用函數所表示的幾何意義,借助于幾何方法或圖象,求出函數的值域,即以數形結合求函數的值域。

  2、求函數的最值與值域的區別和聯(lián)系

  求函數最值的常用方法和求函數值域的方法基本上是相同的,事實(shí)上,如果在函數的值域中存在一個(gè)最。ù螅⿺,這個(gè)數就是函數的最。ù螅┲。因此求函數的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異。

  如函數的值域是(0,16],最大值是16,無(wú)最小值。再如函數的值域是(—∞,—2]∪[2,+∞),但此函數無(wú)最大值和最小值,只有在改變函數定義域后,如x>0時(shí),函數的最小值為2?梢(jiàn)定義域對函數的值域或最值的影響。

  3、函數的最值在實(shí)際問(wèn)題中的應用

  函數的`最值的應用主要體現在用函數知識求解實(shí)際問(wèn)題上,從文字表述上常常表現為“工程造價(jià)最低”,“利潤最大”或“面積(體積)最大(最。钡戎T多現實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對自變量的制約,以便能正確求得最值。

 。ㄋ模、函數的奇偶性

  1、函數的奇偶性的定義:對于函數f(x),如果對于函數定義域內的任意一個(gè)x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數f(x)就叫做奇函數(或偶函數)。

  正確理解奇函數和偶函數的定義,要注意兩點(diǎn):(1)定義域在數軸上關(guān)于原點(diǎn)對稱(chēng)是函數f(x)為奇函數或偶函數的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數定義域上的整體性質(zhì))。

  2、奇偶函數的定義是判斷函數奇偶性的主要依據。為了便于判斷函數的奇偶性,有時(shí)需要將函數化簡(jiǎn)或應用定義的等價(jià)形式:

  注意如下結論的運用:

 。1)不論f(x)是奇函數還是偶函數,f(|x|)總是偶函數;

 。2)f(x)、g(x)分別是定義域D1、D2上的奇函數,那么在D1∩D2上,f(x)+g(x)是奇函數,f(x)·g(x)是偶函數,類(lèi)似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

 。3)奇偶函數的復合函數的奇偶性通常是偶函數;

 。4)奇函數的導函數是偶函數,偶函數的導函數是奇函數。

  3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結論

 。1)一個(gè)函數為奇函數的充要條件是它的圖象關(guān)于原點(diǎn)對稱(chēng);一個(gè)函數為偶函數的充要條件是它的圖象關(guān)于y軸對稱(chēng)。

 。2)如要函數的定義域關(guān)于原點(diǎn)對稱(chēng)且函數值恒為零,那么它既是奇函數又是偶函數。

 。3)若奇函數f(x)在x=0處有意義,則f(0)=0成立。

 。4)若f(x)是具有奇偶性的區間單調函數,則奇(偶)函數在正負對稱(chēng)區間上的單調性是相同(反)的。

 。5)若f(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則F(x)=f(x)+f(—x)是偶函數,G(x)=f(x)—f(—x)是奇函數。

 。6)奇偶性的推廣

  函數y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關(guān)于直線(xiàn)x=a對稱(chēng),即y=f(a+x)為偶函數。函數y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對稱(chēng)圖形,即y=f(a+x)為奇函數。

 。ㄎ澹、函數的單調性

  1、單調函數

  對于函數f(x)定義在某區間[a,b]上任意兩點(diǎn)x1,x2,當x1>x2時(shí),都有不等式f(x1)>(或<)f(x2)成立,稱(chēng)f(x)在[a,b]上單調遞增(或遞減);增函數或減函數統稱(chēng)為單調函數。

  對于函數單調性的定義的理解,要注意以下三點(diǎn):

 。1)單調性是與“區間”緊密相關(guān)的概念。一個(gè)函數在不同的區間上可以有不同的單調性。

 。2)單調性是函數在某一區間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替。

 。3)單調區間是定義域的子集,討論單調性必須在定義域范圍內。

 。4)注意定義的兩種等價(jià)形式:

  設x1、x2∈[a,b],那么:

 、僭赱a、b]上是增函數;

  在[a、b]上是減函數。

 、谠赱a、b]上是增函數。

  在[a、b]上是減函數。

  需要指出的是:①的幾何意義是:增(減)函數圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線(xiàn)的斜率都大于(或小于)零。

 。5)由于定義都是充要性命題,因此由f(x)是增(減)函數,且(或x1>x2),這說(shuō)明單調性使得自變量間的不等關(guān)系和函數值之間的不等關(guān)系可以“正逆互推”。

  5、復合函數y=f[g(x)]的單調性

  若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則復合函數y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減。簡(jiǎn)稱(chēng)“同增、異減”。

  在研究函數的單調性時(shí),常需要先將函數化簡(jiǎn),轉化為討論一些熟知函數的單調性。因此,掌握并熟記一次函數、二次函數、指數函數、對數函數的單調性,將大大縮短我們的判斷過(guò)程。

  6、證明函數的單調性的方法

 。1)依定義進(jìn)行證明。其步驟為:

 、偃稳1、x2∈M且x1(或<)f(x2);

 、诟鶕x,得出結論。

 。2)設函數y=f(x)在某區間內可導。

  如果f′(x)>0,則f(x)為增函數;如果f′(x)<0,則f(x)為減函數。

 。、函數的圖象

  函數的圖象是函數的直觀(guān)體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問(wèn)題的意識。

  求作圖象的函數表達式

  與f(x)的關(guān)系

  由f(x)的圖象需經(jīng)過(guò)的變換

  y=f(x)±b(b>0)

  沿y軸向平移b個(gè)單位

  y=f(x±a)(a>0)

  沿x軸向平移a個(gè)單位

  y=—f(x)

  作關(guān)于x軸的對稱(chēng)圖形

  y=f(|x|)

  右不動(dòng)、左右關(guān)于y軸對稱(chēng)

  y=|f(x)|

  上不動(dòng)、下沿x軸翻折

  y=f—1(x)

  作關(guān)于直線(xiàn)y=x的對稱(chēng)圖形

  y=f(ax)(a>0)

  橫坐標縮短到原來(lái)的,縱坐標不變

  y=af(x)

  縱坐標伸長(cháng)到原來(lái)的|a|倍,橫坐標不變

  y=f(—x)

  作關(guān)于y軸對稱(chēng)的圖形

  【例】定義在實(shí)數集上的函數f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

 、偾笞C:f(0)=1;

 、谇笞C:y=f(x)是偶函數;

 、廴舸嬖诔礳,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問(wèn)函數f(x)是不是周期函數,如果是,找出它的一個(gè)周期;如果不是,請說(shuō)明理由。

  思路分析:我們把沒(méi)有給出解析式的函數稱(chēng)之為抽象函數,解決這類(lèi)問(wèn)題一般采用賦值法。

  解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。

 、诹顇=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說(shuō)明f(x)為偶函數。

 、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=

  所以,所以f(x+c)=—f(x)。

  兩邊應用中的結論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數,2c就是它的一個(gè)周期。

函數知識點(diǎn)總結4

  一、函數的定義域的常用求法:

  1、分式的分母不等于零;

  2、偶次方根的被開(kāi)方數大于等于零;

  3、對數的真數大于零;

  4、指數函數和對數函數的底數大于零且不等于1;

  5、三角函數正切函數y=tanx中x≠kπ+π/2;

  6、如果函數是由實(shí)際意義確定的解析式,應依據自變量的實(shí)際意義確定其取值范圍。

  二、函數的解析式的常用求法:

  1、定義法;2、換元法;3、待定系數法;4、函數方程法;5、參數法;6、配方法

  三、函數的`值域的常用求法:

  1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調性法;7、直接法

  四、函數的最值的常用求法:

  1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調性法

  五、函數單調性的常用結論:

  1、若f(x),g(x)均為某區間上的增(減)函數,則f(x)+g(x)在這個(gè)區間上也為增(減)函數

  2、若f(x)為增(減)函數,則-f(x)為減(增)函數

  3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

  4、奇函數在對稱(chēng)區間上的單調性相同,偶函數在對稱(chēng)區間上的單調性相反。

  5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

  六、函數奇偶性的常用結論:

  1、如果一個(gè)奇函數在x=0處有定義,則f(0)=0,如果一個(gè)函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)

  2、兩個(gè)奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

  3、一個(gè)奇函數與一個(gè)偶函數的積(商)為奇函數。

  4、兩個(gè)函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個(gè)是偶函數,那么該復合函數就是偶函數;當兩個(gè)函數都是奇函數時(shí),該復合函數是奇函數。

  5、若函數f(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點(diǎn)是:右端為一個(gè)奇函數和一個(gè)偶函數的和。

函數知識點(diǎn)總結5

  1二次函數的定義

  一般地,形如y=ax2+bx+c(a,b,c為常數,a≠0)的函數叫做x的二次函數.如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數.

  注意:(1)二次函數是關(guān)于自變量的二次式,二次項系數a必須是非零實(shí)數,即a≠0,而b,c是任意實(shí)數,二次函數的表達式是一個(gè)整式;

  (2)二次函數y=ax2+bx+c(a,b,c是常數,a≠0),自變量x的取值范圍是全體實(shí)數;

  (3)當b=c=0時(shí),二次函數y=ax2是最簡(jiǎn)單的二次函數;

  (4)一個(gè)函數是否是二次函數,要化簡(jiǎn)整理后,對照定義才能下結論,例如y=x2-x(x-1)化簡(jiǎn)后變?yōu)閥=x,故它不是二次函數.

  2二次函數解析式的幾種形式

  (1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).

  (2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數,a≠0).

  (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線(xiàn)與x軸的交點(diǎn)的橫坐標,即一元二次方程ax2+bx+c=0的'兩個(gè)根,a≠0.

  說(shuō)明:(1)任何一個(gè)二次函數通過(guò)配方都可以化為頂點(diǎn)式y=a(x-h)2+k,拋物線(xiàn)的頂點(diǎn)坐標是(h,k),h=0時(shí),拋物線(xiàn)y=ax2+k的頂點(diǎn)在y軸上;當k=0時(shí),拋物線(xiàn)a(x-h)2的頂點(diǎn)在x軸上;當h=0且k=0時(shí),拋物線(xiàn)y=ax2的頂點(diǎn)在原點(diǎn)

  3二次函數y=ax2+c的圖象與性質(zhì)

  (1)拋物線(xiàn)y=ax2+c的形狀由a決定,位置由c決定.

  (2)二次函數y=ax2+c的圖象是一條拋物線(xiàn),頂點(diǎn)坐標是(0,c),對稱(chēng)軸是y軸.

  當a>0時(shí),圖象的開(kāi)口向上,有最低點(diǎn)(即頂點(diǎn)),當x=0時(shí),y最小值=c.在y軸左側,y隨x的增大而減小;在y軸右側,y隨x增大而增大.

  當a<0時(shí),圖象的開(kāi)口向下,有最高點(diǎn)(即頂點(diǎn)),當x=0時(shí),y最大值=c.在y軸左側,y隨x的增大而增大;在y軸右側,y隨x增大而減小.

  (3)拋物線(xiàn)y=ax2+c與y=ax2的關(guān)系.

  拋物線(xiàn)y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線(xiàn)y=ax2+c可由拋物線(xiàn)y=ax2沿y軸向上或向下平行移動(dòng)|c|個(gè)單位得到.當c>0時(shí),向上平行移動(dòng),當c<0時(shí),向下平行移動(dòng).

函數知識點(diǎn)總結6

  首先,把主要精力放在基礎知識、基本技能、基本方法這三個(gè)方面上、因為每次考試占絕大部分的是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納,調整好自己的心態(tài),使自己在任何時(shí)候鎮靜,思路有條不紊,克服浮躁情緒、特別是對自己要有信心,永遠鼓勵自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能把我打垮的自豪感、

  在考試前要做好準備,練練常規題,把自己的思路展開(kāi),切忌考前在保證正確率的前提下提高解題速度、對于一些容易的基礎題,要有十二分的把握拿滿(mǎn)分;對于一些難題,也要盡量拿分,考試中要嘗試得分,使自己的.水平正常甚至超常發(fā)揮、

  要想學(xué)好初中數學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路、剛開(kāi)始要以基礎題目入手,以課上的題目為準,提高自己的分析解決能力,掌握一般的解題思路、對于一些易錯題,可備有錯題集,寫(xiě)出自己的解題思路、正確的解題過(guò)程,兩者一起比較找出自己的錯誤所在,以便及時(shí)更正、在平時(shí)養成良好的解題習慣、讓自己的精力高度集中,使大腦興奮思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如、實(shí)踐證明:越到關(guān)鍵的時(shí)候,你所表現的解題習慣與平時(shí)解題無(wú)異、如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養成良好的解題習慣是非常重要的、

  初中數學(xué)解題方法

  第一點(diǎn):卓絕點(diǎn):熟悉數學(xué)習題中常設計的內容,定義、公式、原理等等

  第二點(diǎn):做題有步驟,先易后難

  初中數學(xué)做題技巧有一點(diǎn),那就是先易后難、正所謂“一屋不掃何以?huà)咛煜?”,如果同學(xué)們連那些簡(jiǎn)單容易的數學(xué)題目都解答不出來(lái)又怎么能夠解答那些疑難的數學(xué)題目呢?先易后難的做數學(xué)題目不僅能夠增加同學(xué)們做數學(xué)題的信心,還能夠讓同學(xué)享受解答數學(xué)題的那個(gè)過(guò)程、

  第三點(diǎn):認真做好歸納總結

函數知識點(diǎn)總結7

  當h>0時(shí),y=a(_-h)^2的圖象可由拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位得到,

  當h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

  當h>0,k>0時(shí),將拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y=a(_-h)^2+k的圖象;

  當h>0,k<0時(shí),將拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(_-h)^2+k的圖象;

  當h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y=a(_-h)^2+k的圖象;

  當h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y=a(_-h)^2+k的圖象;

  因此,研究拋物線(xiàn)y=a_^2+b_+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標、對稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

  2.拋物線(xiàn)y=a_^2+b_+c(a≠0)的圖象:當a>0時(shí),開(kāi)口向上,當a<0時(shí)開(kāi)口向下,對稱(chēng)軸是直線(xiàn)_=-b/2a,頂點(diǎn)坐標是(-b/2a,[4ac-b^2]/4a).

  3.拋物線(xiàn)y=a_^2+b_+c(a≠0),若a>0,當_≤-b/2a時(shí),y隨_的.增大而減小;當_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當_≤-b/2a時(shí),y隨_的增大而增大;當_≥-b/2a時(shí),y隨_的增大而減小.

  4.拋物線(xiàn)y=a_^2+b_+c的圖象與坐標軸的交點(diǎn):

  (1)圖象與y軸一定相交,交點(diǎn)坐標為(0,c);

  (2)當△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

  (a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|

  當△=0.圖象與_軸只有一個(gè)交點(diǎn);

  當△<0.圖象與_軸沒(méi)有交點(diǎn).當a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數時(shí),都有y>0;當a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數時(shí),都有y<0.

  5.拋物線(xiàn)y=a_^2+b_+c的最值:如果a>0(a<0),則當_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

  頂點(diǎn)的橫坐標,是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標,是最值的取值.

  6.用待定系數法求二次函數的解析式

  (1)當題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知_、y的三對對應值時(shí),可設解析式為一般形式:

  y=a_^2+b_+c(a≠0).

  (2)當題給條件為已知圖象的頂點(diǎn)坐標或對稱(chēng)軸時(shí),可設解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).

  (3)當題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標時(shí),可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

  7.二次函數知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數知識為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現.

函數知識點(diǎn)總結8

  基本概念

  1、變量:在一個(gè)變化過(guò)程中可以取不同數值的量。常量:在一個(gè)變化過(guò)程中只能取同一數值的量。

  2、函數:一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對于x的每一個(gè)確定的值,y都有唯一確定的值與其對應,那么我們就把x稱(chēng)為自變量,把y稱(chēng)為因變量,y是x的函數。

  *判斷Y是否為X的函數,只要看X取值確定的時(shí)候,Y是否有唯一確定的值與之對應3、定義域:一般的,一個(gè)函數的自變量允許取值的范圍,叫做這個(gè)函數的定義域。(x的取值范圍)一次函數

  1..自變量x和因變量y有如下關(guān)系:

  y=kx+b(k為任意不為零實(shí)數,b為任意實(shí)數)則此時(shí)稱(chēng)y是x的一次函數。特別的,當b=0時(shí),y是x的正比例函數。即:y=kx(k為任意不為零實(shí)數)

  定義域:自變量的取值范圍,自變量的取值應使函數有意義;要與實(shí)際有意義。2.當x=0時(shí),b為函數在y軸上的截距。一次函數性質(zhì):

  1在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b(k≠0)。

  2一次函數與y軸交點(diǎn)的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過(guò)原點(diǎn)。3.函數不是數,它是指某一變量過(guò)程中兩個(gè)變量之間的關(guān)系。

  特別地,當b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數的圖像。這時(shí),當k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當k<0時(shí),直線(xiàn)只通過(guò)二、四象限。4、特殊位置關(guān)系

  當平面直角坐標系中兩直線(xiàn)平行時(shí),其函數解析式中K值(即一次項系數)相等

  當平面直角坐標系中兩直線(xiàn)垂直時(shí),其函數解析式中K值互為負倒數(即兩個(gè)K值的乘積為-1)

  應用

  一次函數y=kx+b的性質(zhì)是:(1)當k>0時(shí),y隨x的增大而增大;(2)當ky2,則x1與x2的大小關(guān)系是()

  A.x1>x2B.x10,且y1>y2。根據一次函數的性質(zhì)“當k>0時(shí),y隨x的增大而增大”,得x1>x2。故選A。

  判斷函數圖象的位置例3.一次函數y=kx+b滿(mǎn)足kb>0,且y隨x的增大而減小,則此函數的圖象不經(jīng)過(guò)()A.第一象限B.第二象限C.第三象限D.第四象限

  解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k

 。5)實(shí)際問(wèn)題中,函數定義域還要和實(shí)際情況相符合,使之有意義。5、函數的圖像

  一般來(lái)說(shuō),對于一個(gè)函數,如果把自變量與函數的每對對應值分別作為點(diǎn)的橫、縱坐標,那么坐標平面內由這些點(diǎn)組成的圖形,就是這個(gè)函數的圖象.

  6、函數解析式:用含有表示自變量的字母的代數式表示因變量的式子叫做解析式。7、描點(diǎn)法畫(huà)函數圖形的一般步驟

  第一步:列表(表中給出一些自變量的值及其對應的函數值);

  第二步:描點(diǎn)(在直角坐標系中,以自變量的值為橫坐標,相應的函數值為縱坐標,描出表格中數值對應的各點(diǎn));第三步:連線(xiàn)(按照橫坐標由小到大的順序把所描出的各點(diǎn)用平滑曲線(xiàn)連接起來(lái))。8、函數的表示方法

  列表法:一目了然,使用起來(lái)方便,但列出的對應值是有限的,不易看出自變量與函數之間的對應規律。

  解析式法:簡(jiǎn)單明了,能夠準確地反映整個(gè)變化過(guò)程中自變量與函數之間的相依關(guān)系,但有些實(shí)際問(wèn)題中的函數關(guān)系,不能用解析式表示。

  圖象法:形象直觀(guān),但只能近似地表達兩個(gè)變量之間的函數關(guān)系。9、正比例函數及性質(zhì)

  一般地,形如y=kx(k是常數,k≠0)的函數叫做正比例函數,其中k叫做比例系數.注:正比例函數一般形式y=kx(k不為零)①k不為零②x指數為1③b取零解析式:y=kx(k是常數,k≠0)必過(guò)點(diǎn):(0,0)、(1,k)

  走向:k>0時(shí),圖像經(jīng)過(guò)一、三象限;k0,y隨x的增大而增大;k0時(shí),向上平移;當b0,圖象經(jīng)過(guò)第一、三象限;k0,圖象經(jīng)過(guò)第一、二象限;b0,y隨x的.增大而增大;k0時(shí),將直線(xiàn)y=kx的圖象向上平移b個(gè)單位;當b

  .函數y=ax+b與y=bx+a的圖象在同一坐標系內的大致位置正確的是()

  將直線(xiàn)y=3x向下平移5個(gè)單位,得到直線(xiàn);將直線(xiàn)y=-x-5向上平移5個(gè)單位,得到直線(xiàn).若直線(xiàn)yxa和直線(xiàn)yxb的交點(diǎn)坐標為(m,8),則ab____________.

  已知函數y=3x+1,當自變量增加m時(shí),相應的函數值增加()A.3m+1B.3mC.mD.3m-111、一次函數y=kx+b的圖象的畫(huà)法.根據幾何知識:經(jīng)過(guò)兩點(diǎn)能畫(huà)出一條直線(xiàn),并且只能畫(huà)出一條直線(xiàn),即兩點(diǎn)確定一條直線(xiàn),所以畫(huà)一次函數的圖象時(shí),只要先描出兩點(diǎn),再連成直線(xiàn)即可.一般情況下:是先選取它與兩坐標軸的交點(diǎn):(0,b),坐標或縱坐標為0的點(diǎn).

  b>0經(jīng)過(guò)第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過(guò)第一、二、四象限經(jīng)過(guò)第二、三、四象限經(jīng)過(guò)第二、四象限k0時(shí),向上平移;當b

 。1)設一次函數的表達式(也叫解析式)為y=kx+b。(2)因為在一次函數上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y=kx+b。所以可以列出2個(gè)方程:y1=kx1+b①

  和y2=kx2+b②

 。3)解這個(gè)二元一次方程,得到k,b的值。(4)最后得到一次函數的表達式。15、一元一次方程與一次函數的關(guān)系

  任何一元一次方程到可以轉化為ax+b=0(a,b為常數,a≠0)的形式,所以解一元一次方程可以轉化為:當某個(gè)一次函數的值為0時(shí),求相應的自變量的值.從圖象上看,相當于已知直線(xiàn)y=ax+b確定它與x軸的交點(diǎn)的橫坐標的值.

函數知識點(diǎn)總結9

  第一、求函數定義域題忽視細節函數的定義域是使函數有意義的自變量的取值范圍,考生想要在考場(chǎng)上準確求出定義域,就要根據函數解析式把各種情況下的自變量的限制條件找出來(lái),列成不等式組,不等式組的解集就是該函數的定義域。

  在求一般函數定義域時(shí),要注意以下幾點(diǎn):分母不為0;偶次被開(kāi)放式非負;真數大于0以及0的0次冪無(wú)意義。函數的定義域是非空的數集,在解答函數定義域類(lèi)的題時(shí)千萬(wàn)別忘了這一點(diǎn)。復合函數要注意外層函數的定義域由內層函數的值域決定。

  第二、帶絕對值的函數單調性判斷錯誤帶絕對值的函數實(shí)質(zhì)上就是分段函數,判斷分段函數的單調性有兩種方法:第一,在各個(gè)段上根據函數的解析式所表示的函數的單調性求出單調區間,然后對各個(gè)段上的單調區間進(jìn)行整合;第二,畫(huà)出這個(gè)分段函數的圖象,結合函數圖象、性質(zhì)能夠進(jìn)行直觀(guān)的判斷。函數題離不開(kāi)函數圖象,而函數圖象反應了函數的所有性質(zhì),考生在解答函數題時(shí),要第一時(shí)間在腦海中畫(huà)出函數圖象,從圖象上分析問(wèn)題,解決問(wèn)題。

  對于函數不同的單調遞增(減)區間,千萬(wàn)記住,不要使用并集,指明這幾個(gè)區間是該函數的單調遞增(減)區間即可。

  第三、求函數奇偶性的常見(jiàn)錯誤求函數奇偶性類(lèi)的題最常見(jiàn)的錯誤有求錯函數定義域或忽視函數定義域,對函數具有奇偶性的前提條件不清,對分段函數奇偶性判斷方法不當等等。判斷函數的奇偶性,首先要考慮函數的定義域,一個(gè)函數具備奇偶性的必要條件是這個(gè)函數的定義域區間關(guān)于原點(diǎn)對稱(chēng),如果不具備這個(gè)條件,函數一定是非奇非偶的函數。在定義域區間關(guān)于原點(diǎn)對稱(chēng)的前提下,再根據奇偶函數的定義進(jìn)行判斷。

  在用定義進(jìn)行判斷時(shí),要注意自變量在定義域區間內的任意性。

  第四、抽象函數推理不嚴謹很多抽象函數問(wèn)題都是以抽象出某一類(lèi)函數的共同“特征”而設計的,在解答此類(lèi)問(wèn)題時(shí),考生可以通過(guò)類(lèi)比這類(lèi)函數中一些具體函數的性質(zhì)去解決抽象函數。多用特殊賦值法,通過(guò)特殊賦可以找到函數的不變性質(zhì),這往往是問(wèn)題的突破口。

  抽象函數性質(zhì)的證明屬于代數推理,和幾何推理證明一樣,考生在作答時(shí)要注意推理的嚴謹性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過(guò)程層次分明,還要注意書(shū)寫(xiě)規范。

  第五、函數零點(diǎn)定理使用不當若函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線(xiàn),且有f(a)f(b)<0。那么函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c∈(a,b),使得f(c)=0。這個(gè)c也可以是方程f(c)=0的根,稱(chēng)之為函數的零點(diǎn)定理,分為“變號零點(diǎn)”和“不變號零點(diǎn)”,而對于“不變號零點(diǎn)”,函數的零點(diǎn)定理是“無(wú)能為力”的,在解決函數的零點(diǎn)時(shí),考生需格外注意這類(lèi)問(wèn)題。

  第六、混淆兩類(lèi)切線(xiàn)曲線(xiàn)上一點(diǎn)處的切線(xiàn)是指以該點(diǎn)為切點(diǎn)的曲線(xiàn)的切線(xiàn),這樣的.切線(xiàn)只有一條;曲線(xiàn)的過(guò)一個(gè)點(diǎn)的切線(xiàn)是指過(guò)這個(gè)點(diǎn)的曲線(xiàn)的所有切線(xiàn),這個(gè)點(diǎn)如果在曲線(xiàn)上當然包括曲線(xiàn)在該點(diǎn)處的切線(xiàn),曲線(xiàn)的過(guò)一個(gè)點(diǎn)的切線(xiàn)可能不止一條。

  因此,考生在求解曲線(xiàn)的切線(xiàn)問(wèn)題時(shí),首先要區分是什么類(lèi)型的切線(xiàn)。

  第七、混淆導數與單調性的關(guān)系一個(gè)函數在某個(gè)區間上是增函數的這類(lèi)題型,如果考生認為函數的導函數在此區間上恒大于0,很容易就會(huì )出錯。

  解答函數的單調性與其導函數的關(guān)系時(shí)一定要注意,一個(gè)函數的導函數在某個(gè)區間上單調遞增(減)的充要條件是這個(gè)函數的導函數在此區間上恒大(小)于等于0,且導函數在此區間的任意子區間上都不恒為零。

  第八、導數與極值關(guān)系不清考生在使用導數求函數極值類(lèi)問(wèn)題時(shí),容易出現的錯誤就是求出使導函數等于0的點(diǎn),卻沒(méi)有對這些點(diǎn)左右兩側導函數的符號進(jìn)行判斷,誤以為使導函數等于0的點(diǎn)就是函數的極值點(diǎn),往往就會(huì )出錯,出錯原因就是考生對導數與極值關(guān)系沒(méi)搞清楚?蓪Ш瘮翟谝粋(gè)點(diǎn)處的導函數值為零只是這個(gè)函數在此點(diǎn)處取到極值的必要條件,小編在此提醒廣大考生,在使用導數求函數極值時(shí),一定要對極值點(diǎn)進(jìn)行仔細檢查。

函數知識點(diǎn)總結10

  一、函數對稱(chēng)性:

  1.2.3.4.5.6.7.8.

  f(a+x)=f(a-x)==>f(x)關(guān)于x=a對稱(chēng)

  f(a+x)=f(b-x)==>f(x)關(guān)于x=(a+b)/2對稱(chēng)f(a+x)=-f(a-x)==>f(x)關(guān)于點(diǎn)(a,0)對稱(chēng)f(a+x)=-f(a-x)+2b==>f(x)關(guān)于點(diǎn)(a,b)對稱(chēng)

  f(a+x)=-f(b-x)+c==>f(x)關(guān)于點(diǎn)[(a+b)/2,c/2]對稱(chēng)y=f(x)與y=f(-x)關(guān)于x=0對稱(chēng)y=f(x)與y=-f(x)關(guān)于y=0對稱(chēng)y=f(x)與y=-f(-x)關(guān)于點(diǎn)(0,0)對稱(chēng)

  例1:證明函數y=f(a+x)與y=f(b-x)關(guān)于x=(b-a)/2對稱(chēng)。

  【解析】求兩個(gè)不同函數的對稱(chēng)軸,用設點(diǎn)和對稱(chēng)原理作解。

  證明:假設任意一點(diǎn)P(m,n)在函數y=f(a+x)上,令關(guān)于x=t的對稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a+m)=f[b(2tm)]

  ∴b2t=a,==>t=(b-a)/2,即證得對稱(chēng)軸為x=(b-a)/2.

  例2:證明函數y=f(a-x)與y=f(xb)關(guān)于x=(a+b)/2對稱(chēng)。

  證明:假設任意一點(diǎn)P(m,n)在函數y=f(a-x)上,令關(guān)于x=t的對稱(chēng)點(diǎn)Q(2tm,n),那么n=f(a-m)=f[(2tm)b]

  ∴2t-b=a,==>t=(a+b)/2,即證得對稱(chēng)軸為x=(a+b)/2.

  二、函數的周期性

  令a,b均不為零,若:

  1、函數y=f(x)存在f(x)=f(x+a)==>函數最小正周期T=|a|

  2、函數y=f(x)存在f(a+x)=f(b+x)==>函數最小正周期T=|b-a|

  3、函數y=f(x)存在f(x)=-f(x+a)==>函數最小正周期T=|2a|

  4、函數y=f(x)存在f(x+a)=1/f(x)==>函數最小正周期T=|2a|

  5、函數y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函數最小正周期T=|4a|

  這里只對第2~5點(diǎn)進(jìn)行解析。

  第2點(diǎn)解析:

  令X=x+a,f[a+(xa)]=f[b+(xa)]∴f(x)=f(x+ba)==>T=ba

  第3點(diǎn)解析:同理,f(x+a)=-f(x+2a)……

 、賔(x)=-f(x+a)……

 、凇嘤散俸廷诮獾胒(x)=f(x+2a)∴函數最小正周期T=|2a|

  第4點(diǎn)解析:

  f(x+2a)=1/f(x+a)==>f(x+a)=1/f(x+2a)

  又∵f(x+a)=1/f(x)∴f(x)=f(x+2a)

  ∴函數最小正周期T=|2a|

  第5點(diǎn)解析:

  ∵f(x+a)={2[1f(x)]}/[1f(x)]=2/[1f(x)]1

  ∴1f(x)=2/[f(x)+1]移項得f(x)=12/[f(x+a)+1]

  那么f(x-a)=12/[f(x)+1],等式右邊通分得f(x-a)=[f(x)1]/[1+f(x)]∴1/[f(x-a)=[1+f(x)]/[f(x)1],即-1/[f(x-a)=[1+f(x)]/[1-f(x)]∴-1/[f(x-a)=f(x+a),-1/[f(x2a)=f(x)==>-1/f(x)=f(x-2a)①,又∵-1/f(x)=f(x+2a)②,

  由①②得f(x+2a)=f(x-2a)==>f(x)=f(x+4a)

  ∴函數最小正周期T=|4a|

  擴展閱讀:函數對稱(chēng)性、周期性和奇偶性的規律總結

  函數對稱(chēng)性、周期性和奇偶性規律總結

 。ㄒ唬┩缓瘮档暮瘮档钠媾夹耘c對稱(chēng)性:(奇偶性是一種特殊的對稱(chēng)性)

  1、奇偶性:

 。1)奇函數關(guān)于(0,0)對稱(chēng),奇函數有關(guān)系式f(x)f(x)0

 。2)偶函數關(guān)于y(即x=0)軸對稱(chēng),偶函數有關(guān)系式f(x)f(x)

  2、奇偶性的拓展:同一函數的對稱(chēng)性

 。1)函數的軸對稱(chēng):

  函數yf(x)關(guān)于xa對稱(chēng)f(ax)f(ax)

  f(ax)f(ax)也可以寫(xiě)成f(x)f(2ax)或f(x)f(2ax)

  若寫(xiě)成:f(ax)f(bx),則函數yf(x)關(guān)于直線(xiàn)x稱(chēng)

 。╝x)(bx)ab對22證明:設點(diǎn)(x1,y1)在yf(x)上,通過(guò)f(x)f(2ax)可知,y1f(x1)f(2ax1),

  即點(diǎn)(2ax1,y1)也在yf(x)上,而點(diǎn)(x1,y1)與點(diǎn)(2ax1,y1)關(guān)于x=a對稱(chēng)。得證。

  說(shuō)明:關(guān)于xa對稱(chēng)要求橫坐標之和為2a,縱坐標相等。

  ∵(ax1,y1)與(ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)

  f(ax)f(ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)

  f(x)f(2ax)

  ∵(x1,y1)與(2ax1,y1)關(guān)于xa對稱(chēng),∴函數yf(x)關(guān)于xa對稱(chēng)

  f(x)f(2ax)

 。2)函數的點(diǎn)對稱(chēng):

  函數yf(x)關(guān)于點(diǎn)(a,b)對稱(chēng)f(ax)f(ax)2b

  上述關(guān)系也可以寫(xiě)成f(2ax)f(x)2b或f(2ax)f(x)2b

  若寫(xiě)成:f(ax)f(bx)c,函數yf(x)關(guān)于點(diǎn)(abc,)對稱(chēng)2證明:設點(diǎn)(x1,y1)在yf(x)上,即y1f(x1),通過(guò)f(2ax)f(x)2b可知,f(2ax1)f(x1)2b,所以f(2ax1)2bf(x1)2by1,所以點(diǎn)(2ax1,2by1)也在yf(x)上,而點(diǎn)(2ax1,2by1)與(x1,y1)關(guān)于(a,b)對稱(chēng)。得證。

  說(shuō)明:關(guān)于點(diǎn)(a,b)對稱(chēng)要求橫坐標之和為2a,縱坐標之和為2b,如(ax)與(ax)之和為2a。

 。3)函數yf(x)關(guān)于點(diǎn)yb對稱(chēng):假設函數關(guān)于yb對稱(chēng),即關(guān)于任一個(gè)x值,都有兩個(gè)y值與其對應,顯然這不符合函數的定義,故函數自身不可能關(guān)于yb對稱(chēng)。但在曲線(xiàn)c(x,y)=0,則有可能會(huì )出現關(guān)于yb對稱(chēng),比如圓c(x,y)x2y240它會(huì )關(guān)于y=0對稱(chēng)。

 。4)復合函數的奇偶性的性質(zhì)定理:

  性質(zhì)1、復數函數y=f[g(x)]為偶函數,則f[g(-x)]=f[g(x)]。復合函數y=f[g(x)]為奇函數,則f[g(-x)]=-f[g(x)]。

  性質(zhì)2、復合函數y=f(x+a)為偶函數,則f(x+a)=f(-x+a);復合函數y=f(x+a)為奇函數,則f(-x+a)=-f(a+x)。

  性質(zhì)3、復合函數y=f(x+a)為偶函數,則y=f(x)關(guān)于直線(xiàn)x=a軸對稱(chēng)。復合函數y=f(x+a)為奇函數,則y=f(x)關(guān)于點(diǎn)(a,0)中心對稱(chēng)。

  總結:x的'系數一個(gè)為1,一個(gè)為-1,相加除以2,可得對稱(chēng)軸方程

  總結:x的系數一個(gè)為1,一個(gè)為-1,f(x)整理成兩邊,其中一個(gè)的系數是為1,另一個(gè)為-1,存在對稱(chēng)中心。

  總結:x的系數同為為1,具有周期性。

 。ǘ﹥蓚(gè)函數的圖象對稱(chēng)性

  1、yf(x)與yf(x)關(guān)于X軸對稱(chēng)。

  證明:設yf(x)上任一點(diǎn)為(x1,y1)則y1f(x1),所以yf(x)經(jīng)過(guò)點(diǎn)(x1,y1)

  ∵(x1,y1)與(x1,y1)關(guān)于X軸對稱(chēng),∴y1f(x1)與yf(x)關(guān)于X軸對稱(chēng).注:換種說(shuō)法:yf(x)與yg(x)f(x)若滿(mǎn)足f(x)g(x),即它們關(guān)于y0對稱(chēng)。

函數知識點(diǎn)總結11

  一、函數的概念與表示

  1、映射

  (1)映射:設A、B是兩個(gè)集合,如果按照某種映射法則f,對于集合A中的任一個(gè)元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

  注意點(diǎn):(1)對映射定義的理解。(2)判斷一個(gè)對應是映射的方法。一對多不是映射,多對一是映射

  2、函數

  構成函數概念的三要素

 、俣x域②對應法則③值域

  兩個(gè)函數是同一個(gè)函數的條件:三要素有兩個(gè)相同

  二、函數的解析式與定義域

  1、求函數定義域的主要依據:

  (1)分式的'分母不為零;

  (2)偶次方根的被開(kāi)方數不小于零,零取零次方?jīng)]有意義;

  (3)對數函數的真數必須大于零;

  (4)指數函數和對數函數的底數必須大于零且不等于1;

  三、函數的值域

  1求函數值域的方法

 、僦苯臃ǎ簭淖宰兞縳的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡(jiǎn)單的復合函數;

 、趽Q元法:利用換元法將函數轉化為二次函數求值域,適合根式內外皆為一次式;

 、叟袆e式法:運用方程思想,依據二次方程有根,求出y的取值范圍;適合分母為二次且∈R的分式;

 、芊蛛x常數:適合分子分母皆為一次式(x有范圍限制時(shí)要畫(huà)圖);

 、輪握{性法:利用函數的單調性求值域;

 、迗D象法:二次函數必畫(huà)草圖求其值域;

 、呃脤μ柡瘮

 、鄮缀我饬x法:由數形結合,轉化距離等求值域。主要是含絕對值函數

  四.函數的奇偶性

  1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱(chēng)y=f(x)為偶函數。

  如果對于任意∈A,都有,則稱(chēng)y=f(x)為奇

  函數。

  2.性質(zhì):

 、賧=f(x)是偶函數y=f(x)的圖象關(guān)于軸對稱(chēng),y=f(x)是奇函數y=f(x)的圖象關(guān)于原點(diǎn)對稱(chēng),

 、谌艉瘮礷(x)的定義域關(guān)于原點(diǎn)對稱(chēng),則f(0)=0

 、燮妗榔=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數的定義域D1,D2,D1∩D2要關(guān)于原點(diǎn)對稱(chēng)]

  3.奇偶性的判斷

 、倏炊x域是否關(guān)于原點(diǎn)對稱(chēng)②看f(x)與f(-x)的關(guān)系

  五、函數的單調性

  1、函數單調性的定義:

  2設是定義在M上的函數,若f(x)與g(x)的單調性相反,則在M上是減函數;若f(x)與g(x)的單調性相同,則在M上是增函數。

函數知識點(diǎn)總結12

  本節知識包括函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的對稱(chēng)性和函數的圖象等知識點(diǎn)。函數的單調性、函數的奇偶性、函數的周期性、函數的最值、函數的.對稱(chēng)性是學(xué)習函數的圖象的基礎,函數的圖象是它們的綜合。所以理解了前面的幾個(gè)知識點(diǎn),函數的圖象就迎刃而解了。

  一、函數的單調性

  1、函數單調性的定義

  2、函數單調性的判斷和證明:

  (1)定義法

  (2)復合函數分析法

  (3)導數證明法

  (4)圖象法

  二、函數的奇偶性和周期性

  1、函數的奇偶性和周期性的定義

  2、函數的奇偶性的判定和證明方法

  3、函數的周期性的判定方法

  三、函數的圖象

  1、函數圖象的作法

  (1)描點(diǎn)法

  (2)圖象變換法

  2、圖象變換包括圖象:平移變換、伸縮變換、對稱(chēng)變換、翻折變換。

  常見(jiàn)考法

  本節是段考和高考必不可少的考查內容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數的單調性、最值和圖象等。

  誤區提醒

  1、求函數的單調區間,必須先求函數的定義域,即遵循“函數問(wèn)題定義域優(yōu)先的原則”。

  2、單調區間必須用區間來(lái)表示,不能用集合或不等式,單調區間一般寫(xiě)成開(kāi)區間,不必考慮端點(diǎn)問(wèn)題。

  3、在多個(gè)單調區間之間不能用“或”和“ ”連接,只能用逗號隔開(kāi)。

  4、判斷函數的奇偶性,首先必須考慮函數的定義域,如果函數的定義域不關(guān)于原點(diǎn)對稱(chēng),則函數一定是非奇非偶函數。

  5、作函數的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數的圖象。

函數知識點(diǎn)總結13

  誘導公式的本質(zhì)

  所謂三角函數誘導公式,就是將角n(/2)的三角函數轉化為角的三角函數。

  常用的誘導公式

  公式一: 設為任意角,終邊相同的角的'同一三角函數的值相等:

  sin(2k)=sin kz

  cos(2k)=cos kz

  tan(2k)=tan kz

  cot(2k)=cot kz

  公式二: 設為任意角,的三角函數值與的三角函數值之間的關(guān)系:

  sin()=-sin

  cos()=-cos

  tan()=tan

  cot()=cot

  公式三: 任意角與 -的三角函數值之間的關(guān)系:

  sin(-)=-sin

  cos(-)=cos

  tan(-)=-tan

  cot(-)=-cot

  公式四: 利用公式二和公式三可以得到與的三角函數值之間的關(guān)系:

  sin()=sin

  cos()=-cos

  tan()=-tan

  cot()=-cot

函數知識點(diǎn)總結14

  一次函數y=kx+b的性質(zhì):(一次函數的圖像是一條直線(xiàn))

  1、一次函數ykxb(k0)經(jīng)過(guò)(0,與y軸)點(diǎn),(,0)點(diǎn).與x軸交點(diǎn)坐標是(,0)交點(diǎn)坐標是(0,)。

  2、k的正、負決定直線(xiàn)的傾斜方向

  當k>0時(shí),y隨x的`增大而增大;當k<0時(shí),y隨x的增大而減小。

  3、|k|的大小決定直線(xiàn)的傾斜程度

  |k|越大,直線(xiàn)與x軸相交的銳角度數越大(直線(xiàn)陡);|k|越小,直線(xiàn)與x軸相交的銳角度數越。ㄖ本(xiàn)緩);

  4、b的正負決定直線(xiàn)與y軸交點(diǎn)的位置當b>0時(shí),直線(xiàn)與y軸交于y軸正半軸上;當b<0時(shí),直線(xiàn)與y軸交于y軸負半軸上;當b=0時(shí),直線(xiàn)經(jīng)過(guò)原點(diǎn)。

  5、k、b的符號不同,直線(xiàn)經(jīng)過(guò)的象限也不同。

  當k>0時(shí),直線(xiàn)經(jīng)過(guò)一、三象限;當k<0時(shí),圖像經(jīng)過(guò)二、四象限。進(jìn)一步:

  當k>0,b>0時(shí),直線(xiàn)經(jīng)過(guò)一、二、三象限(不經(jīng)過(guò)第四象限)當k>0,b<0時(shí),直線(xiàn)經(jīng)過(guò)一、三、四象限(不經(jīng)過(guò)第二象限)當k>0,b=0時(shí),直線(xiàn)經(jīng)過(guò)一、三、象限和原點(diǎn)

  當k<0,b>0時(shí),直線(xiàn)經(jīng)過(guò)一、二、四象限(不經(jīng)過(guò)第三象限)當k<0,b<0時(shí),直線(xiàn)經(jīng)過(guò)二、三、四象限(不經(jīng)過(guò)第一象限)當k<0,b=0時(shí),直線(xiàn)經(jīng)過(guò)二、四、象限和原點(diǎn)

  反過(guò)來(lái):不經(jīng)過(guò)第一象限指:經(jīng)過(guò)二、三、四象限或經(jīng)過(guò)二四象限和原點(diǎn)。其它類(lèi)似。

函數知識點(diǎn)總結15

  總體上必須清楚的:

  1)程序結構是三種:順序結構、選擇結構(分支結構)、循環(huán)結構。

  2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個(gè)main函數。

  3)計算機的數據在電腦中保存是以二進(jìn)制的形式.數據存放的位置就是他的地址.

  4)bit是位是指為0或者1。 byte是指字節,一個(gè)字節=八個(gè)位.

  概念?嫉降模

  1、編譯預處理不是C語(yǔ)言的一部分,不占運行時(shí)間,不要加分號。C語(yǔ)言編譯的程序稱(chēng)為源程序,它以ASCII數值存放在文本文件中。

  2、define PI 3.1415926;這個(gè)寫(xiě)法是錯誤的,一定不能出現分號。 -

  3、每個(gè)C語(yǔ)言程序中main函數是有且只有一個(gè)。

  4、在函數中不可以再定義函數。

  5、算法:可以沒(méi)有輸入,但是一定要有輸出。

  6、break可用于循環(huán)結構和switch語(yǔ)句。

  7、逗號運算符的級別最低,賦值的級別倒數第二。

  第一章C語(yǔ)言的基礎知識

  第一節、對C語(yǔ)言的基礎認識

  1、C語(yǔ)言編寫(xiě)的程序稱(chēng)為源程序,又稱(chēng)為編譯單位。

  2、C語(yǔ)言書(shū)寫(xiě)格式是自由的,每行可以寫(xiě)多個(gè)語(yǔ)句,可以寫(xiě)多行。

  3、一個(gè)C語(yǔ)言程序有且只有一個(gè)main函數,是程序運行的起點(diǎn)。

  第二節、熟悉vc++

  1、VC是軟件,用來(lái)運行寫(xiě)的C語(yǔ)言程序。

  2、每個(gè)C語(yǔ)言程序寫(xiě)完后,都是先編譯,后鏈接,最后運行。(.c—.obj—.exe)這個(gè)過(guò)程中注意.c和.obj文件時(shí)無(wú)法運行的,只有.exe文件才可以運行。(?迹。

  第三節、標識符

  1、標識符(必考內容):

  合法的要求是由字母,數字,下劃線(xiàn)組成。有其它元素就錯了。

  并且第一個(gè)必須為字母或則是下劃線(xiàn)。第一個(gè)為數字就錯了

  2、標識符分為關(guān)鍵字、預定義標識符、用戶(hù)標識符。

  關(guān)鍵字:不可以作為用戶(hù)標識符號。main define scanf printf都不是關(guān)鍵字。迷惑你的地方If是可以做為用戶(hù)標識符。因為If中的第一個(gè)字母大寫(xiě)了,所以不是關(guān)鍵字。

  預定義標識符:背誦define scanf printf include。記住預定義標識符可以做為用戶(hù)標識符。

  用戶(hù)標識符:基本上每年都考,詳細請見(jiàn)書(shū)上習題。

  第四節:進(jìn)制的轉換

  十進(jìn)制轉換成二進(jìn)制、八進(jìn)制、十六進(jìn)制。

  二進(jìn)制、八進(jìn)制、十六進(jìn)制轉換成十進(jìn)制。

  第五節:整數與實(shí)數

  1)C語(yǔ)言只有八、十、十六進(jìn)制,沒(méi)有二進(jìn)制。但是運行時(shí)候,所有的進(jìn)制都要轉換成二進(jìn)制來(lái)進(jìn)行處理。(考過(guò)兩次)

  a、C語(yǔ)言中的八進(jìn)制規定要以0開(kāi)頭。018的數值是非法的,八進(jìn)制是沒(méi)有8的,逢8進(jìn)1。

  b、C語(yǔ)言中的十六進(jìn)制規定要以0x開(kāi)頭。

  2)小數的合法寫(xiě)法:C語(yǔ)言小數點(diǎn)兩邊有一個(gè)是零的話(huà),可以不用寫(xiě)。

  1.0在C語(yǔ)言中可寫(xiě)成1.

  0.1在C語(yǔ)言中可以寫(xiě)成.1。

  3)實(shí)型數據的合法形式:

  a、2.333e-1就是合法的,且數據是2.333×10-1。

  b、考試口訣:e前e后必有數,e后必為整數。請結合書(shū)上的例子。

  4)整型一般是4個(gè)字節,字符型是1個(gè)字節,雙精度一般是8個(gè)字節:

  long int x;表示x是長(cháng)整型。

  unsigned int x;表示x是無(wú)符號整型。

  第六、七節:算術(shù)表達式和賦值表達式

  核心:表達式一定有數值!

  1、算術(shù)表達式:+,-,*,/,%

  考試一定要注意:“/”兩邊都是整型的話(huà),結果就是一個(gè)整型。 3/2的結果就是1.

  “/”如果有一邊是小數,那么結果就是小數。 3/2.0的結果就是0.5

  “%”符號請一定要注意是余數,考試最容易算成了除號。)%符號兩邊要求是整數。不是整數就錯了。[注意!!!]

  2、賦值表達式:表達式數值是最左邊的數值,a=b=5;該表達式為5,常量不可以賦值。

  1、int x=y=10:錯啦,定義時(shí),不可以連續賦值。

  2、int x,y;

  x=y=10;對滴,定義完成后,可以連續賦值。

  3、賦值的左邊只能是一個(gè)變量。

  4、int x=7.7;對滴,x就是7

  5、float y=7;對滴,x就是7.0

  3、復合的賦值表達式:

  int a=2;

  a*=2+3;運行完成后,a的值是12。

  一定要注意,首先要在2+3的上面打上括號。變成(2+3)再運算。

  4、自加表達式:

  自加、自減表達式:假設a=5,++a(是為6),a++(為5);

  運行的機理:++a是先把變量的數值加上1,然后把得到的數值放到變量a中,然后再用這個(gè)++a表達式的數值為6,而a++是先用該表達式的數值為5,然后再把a的數值加上1為6,

  再放到變量a中。進(jìn)行了++a和a++后在下面的程序中再用到a的話(huà)都是變量a中的6了。

  考試口訣:++在前先加后用,++在后先用后加。

  5、逗號表達式:

  優(yōu)先級別最低。表達式的數值逗號最右邊的那個(gè)表達式的數值。

 。2,3,4)的表達式的數值就是4。

  z=(2,3,4)(整個(gè)是賦值表達式)這個(gè)時(shí)候z的值為4。(有點(diǎn)難度哦。

  z= 2,3,4(整個(gè)是逗號表達式)這個(gè)時(shí)候z的值為2。

  補充:

  1、空語(yǔ)句不可以隨意執行,會(huì )導致邏輯錯誤。

  2、注釋是最近幾年考試的重點(diǎn),注釋不是C語(yǔ)言,不占運行時(shí)間,沒(méi)有分號。不可以嵌套!

  3、強制類(lèi)型轉換:

  一定是(int)a不是int(a),注意類(lèi)型上一定有括號的。

  注意(int)(a+b)和(int)a+b的區別。前是把a+b轉型,后是把a轉型再加b。

  4、三種取整丟小數的情況:

 。、int a =1.6;

 。、(int)a;

 。、1/2;3/2;

  第八節、字符

  1)字符數據的合法形式::

  ‘1’是字符占一個(gè)字節,”1”是字符串占兩個(gè)字節(含有一個(gè)結束符號)。

  ‘0’的ASCII數值表示為48,’a’的ASCII數值是97,’A’的ASCII數值是65。

  一般考試表示單個(gè)字符錯誤的'形式:’65’ “1”

  字符是可以進(jìn)行算術(shù)運算的,記。骸0’-0=48

  大寫(xiě)字母和小寫(xiě)字母轉換的方法:‘A’+32=’a’相互之間一般是相差32。

  2)轉義字符:

  轉義字符分為一般轉義字符、八進(jìn)制轉義字符、十六進(jìn)制轉義字符。

  一般轉義字符:背誦/0、、 ’、 ”、 。

  八進(jìn)制轉義字符:‘141’是合法的,前導的0是不能寫(xiě)的。

  十六進(jìn)制轉義字符:’x6d’才是合法的,前導的0不能寫(xiě),并且x是小寫(xiě)。

  3、字符型和整數是近親:兩個(gè)具有很大的相似之處

  char a = 65 ;

  printf(“%c”, a);得到的輸出結果:a

  printf(“%d”, a);得到的輸出結果:65

  第九節、位運算

  1)位運算的考查:會(huì )有一到二題考試題目。

  總的處理方法:幾乎所有的位運算的題目都要按這個(gè)流程來(lái)處理(先把十進(jìn)制變成二進(jìn)制再變成十進(jìn)制)。

  例1:char a = 6, b;

  b = a<<2;這種題目的計算是先要把a的十進(jìn)制6化成二進(jìn)制,再做位運算。

  例2:一定要記住,異或的位運算符號” ^ ”。0異或1得到1。

  0異或0得到0。兩個(gè)女的生不出來(lái)。

  考試記憶方法:一男(1)一女(0)才可以生個(gè)小孩(1)。

  例3:在沒(méi)有舍去數據的時(shí)候,<<左移一位表示乘以2;>>右移一位表示除以2。

【函數知識點(diǎn)總結】相關(guān)文章:

函數知識點(diǎn)總結02-10

函數知識點(diǎn)總結06-23

[精華]函數知識點(diǎn)總結08-28

函數知識點(diǎn)總結(精)08-21

(精品)函數知識點(diǎn)總結08-22

(精)函數知識點(diǎn)總結08-25

(精)函數知識點(diǎn)總結08-25

函數知識點(diǎn)總結【熱門(mén)】08-21

[精選]函數知識點(diǎn)03-01

函數知識點(diǎn)03-01