成人免费看黄网站无遮挡,caowo999,se94se欧美综合色,a级精品九九九大片免费看,欧美首页,波多野结衣一二三级,日韩亚洲欧美综合

高二數學(xué)知識點(diǎn)總結

時(shí)間:2024-06-02 14:39:27 知識點(diǎn)總結 我要投稿

高二數學(xué)知識點(diǎn)總結[精品]

  總結是事后對某一時(shí)期、某一項目或某些工作進(jìn)行回顧和分析,從而做出帶有規律性的結論,它能夠給人努力工作的動(dòng)力,因此十分有必須要寫(xiě)一份總結哦。那么你知道總結如何寫(xiě)嗎?下面是小編為大家整理的高二數學(xué)知識點(diǎn)總結,歡迎閱讀,希望大家能夠喜歡。

高二數學(xué)知識點(diǎn)總結[精品]

高二數學(xué)知識點(diǎn)總結1

  a^2-b^2=(a+b)(a-b)

  a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)

  三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

  一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數的關(guān)系X1+X2=-b/aX1xX2=c/a注:韋達定理判別式

  b^2-4ac=0注:方程有兩個(gè)相等的實(shí)根b^2-4ac>0注:方程有兩個(gè)不等的實(shí)根b^2-4ac1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4

  1x2+2x3+3x4+4x5+5x6+6x7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b^2=a^2+c^2-2accosB注:角B是邊a和邊c的夾角圓的標準方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圓心坐標圓的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0拋物線(xiàn)標準方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側面積S=cxh斜棱柱側面積S=c"xh

  正棱錐側面積S=1/2cxh"正棱臺側面積S=1/2(c+c")h"圓臺側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pixr2圓柱側面積S=cxh=2pixh圓錐側面積S=1/2xcxl=pixrxl

  弧長(cháng)公式l=axra是圓心角的弧度數r>0扇形面積公式s=1/2xlxr錐體體積公式V=1/3xSxH圓錐體體積公式V=1/3xpixr2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側棱長(cháng)柱體體積公式V=sxh圓柱體V=pixr2h定理

  86平行線(xiàn)分線(xiàn)段成比例定理三條平行線(xiàn)截兩條直線(xiàn),所得的對應線(xiàn)段成比例87推論平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(cháng)線(xiàn)),所得的對應線(xiàn)段成比例

  88定理如果一條直線(xiàn)截三角形的兩邊(或兩邊的延長(cháng)線(xiàn))所得的對應線(xiàn)段成比例,那么這條直線(xiàn)平行于三角形的第三邊

  89平行于三角形的一邊,并且和其他兩邊相交的直線(xiàn),所截得的三角形的三邊與原三角形三邊對應成比例

  90定理平行于三角形一邊的直線(xiàn)和其他兩邊(或兩邊的延長(cháng)線(xiàn))相交,所構成的三角形與原三角形相似

  91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似93判定定理2兩邊對應成比例且?jiàn)A角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)

  95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應成比例,那么這兩個(gè)直角三角形相似

  96性質(zhì)定理1相似三角形對應高的比,對應中線(xiàn)的比與對應角平分線(xiàn)的比都等于相似比

  97性質(zhì)定理2相似三角形周長(cháng)的比等于相似比

  98性質(zhì)定理3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值

  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值

  101圓是定點(diǎn)的距離等于定長(cháng)的點(diǎn)的xx

  102圓的內部可以看作是圓心的距離小于半徑的點(diǎn)的xx103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的xx104同圓或等圓的半徑相等

  105到定點(diǎn)的距離等于定長(cháng)的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長(cháng)為半徑的圓106和已知線(xiàn)段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著(zhù)條線(xiàn)段的垂直平分線(xiàn)107到已知角的兩邊距離相等的點(diǎn)的'軌跡,是這個(gè)角的平分線(xiàn)

  108到兩條平行線(xiàn)距離相等的點(diǎn)的軌跡,是和這兩條平行線(xiàn)平行且距離相等的一條直線(xiàn)

  109定理不在同一直線(xiàn)上的三點(diǎn)確定一個(gè)圓。

  110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條、谙业拇怪逼椒志(xiàn)經(jīng)過(guò)圓心,并且平分弦所對的兩條弧

 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱(chēng)中心的中心對稱(chēng)圖形

  114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  116定理一條弧所對的圓周角等于它所對的圓心角的一半

  117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

  118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

  119推論3如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形

  120定理圓的內接四邊形的對角互補,并且任何一個(gè)外角都等于它的內對角121①直線(xiàn)L和⊙O相交d<r②直線(xiàn)L和⊙O相切d=r③直線(xiàn)L和⊙O相離d>r

高二數學(xué)知識點(diǎn)總結2

  兩個(gè)變量的線(xiàn)性相關(guān)

  1、概念:

 。1)回歸直線(xiàn)方程(2)回歸系數

  2。最小二乘法

  3。直線(xiàn)回歸方程的應用

 。1)描述兩變量之間的依存關(guān)系;利用直線(xiàn)回歸方程即可定量描述兩個(gè)變量間依存的數量關(guān)系

 。2)利用回歸方程進(jìn)行預測;把預報因子(即自變量x)代入回歸方程對預報量(即因變量Y)進(jìn)行估計,即可得到個(gè)體Y值的容許區間。

 。3)利用回歸方程進(jìn)行統計控制規定Y值的變化,通過(guò)控制x的范圍來(lái)實(shí)現統計控制的目標。如已經(jīng)得到了空氣中NO2的濃度和汽車(chē)流量間的`回歸方程,即可通過(guò)控制汽車(chē)流量來(lái)控制空氣中NO2的濃度。

  4。應用直線(xiàn)回歸的注意事項

 。1)做回歸分析要有實(shí)際意義;

 。2)回歸分析前,先作出散點(diǎn)圖;

 。3)回歸直線(xiàn)不要外延。

高二數學(xué)知識點(diǎn)總結3

  1、題型特點(diǎn)

  選擇題突出特點(diǎn)就是,概念性強、數形兼備、一題多解。數量關(guān)系是數學(xué)的一個(gè)重要組成部分,也是數學(xué)考試中一項主要考點(diǎn)。數學(xué)研究的不僅是數,還有形,而且對數和形的研究,不是孤立的,而是將它們辯證統一起來(lái)。

  2、解題方法

  選擇題的解題方法是多種多樣的?梢杂弥边x法、排除法、代入法、觀(guān)察法、數形結合法等。

  直選法:對于一些簡(jiǎn)單的題目,可以直接從題目的條件出發(fā),通過(guò)正確的運算或推理,直接求得結論,再與選項對照來(lái)確定答案。

  排除法:從四個(gè)選項中排除掉容易判斷是錯誤的答案,再從剩下的選項中選擇。包括分析排除法和反例排除法兩種:分析排除法一般用于題目條件已知,選項為計算結果的選擇題;反例排除法一般用于選項為四個(gè)命題的選擇題。

  代入法:如果用常規的方法求解較為困難,我們就用代入法。一般分為已知代入法、選項代入法和特殊值代入法?梢愿鶕䲢l件或答案中所提供的信息,選擇某些特殊情況進(jìn)行分析,或選擇某些特殊值進(jìn)行計算,或將字母參數換成具體數值代入,把一般形式變?yōu)樘厥庑问,再進(jìn)行判斷。

  對于題目答案已經(jīng)有了提示的.選擇題,可以根據提示,用觀(guān)察選項解答。

  選擇題的解答方法多種多樣,我們不要局限于一種方法,而要學(xué)會(huì )一題多解,通過(guò)多做題找到適合自己的方法。還有大家要知道,選擇題有四個(gè)選項,如果真的不會(huì )做,無(wú)從下手,也不要空著(zhù),可以四選一,這樣也有25%的可能性選對。

高二數學(xué)知識點(diǎn)總結4

  課內重視聽(tīng)講,課后及時(shí)復習。

  新知識的接受,數學(xué)能力的培養主要在課堂上進(jìn)行,所以要特點(diǎn)重視課內的學(xué)習效率,尋求正確的學(xué)習方法。上課時(shí)要緊跟老師的思路,積極展開(kāi)思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學(xué)習,課后要及時(shí)復習不留疑點(diǎn)。首先要在做各種習題之前將老師所講的知識點(diǎn)回憶一遍,正確掌握各類(lèi)公式的推理過(guò)程,應盡量回憶而不采用不清楚立即翻書(shū)之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問(wèn)的'學(xué)習作風(fēng),對于有些題目由于自己的思路不清,一時(shí)難以解出,應讓自己冷靜下來(lái)認真分析題目,盡量自己解決。在每個(gè)階段的學(xué)習中要進(jìn)行整理和歸納總結,把知識的點(diǎn)、線(xiàn)、面結合起來(lái)交織成知識網(wǎng)絡(luò ),納入自己的知識體系。

  適當多做題,養成良好的解題習慣。

  要想學(xué)好數學(xué),多做題是難免的,熟悉掌握各種題型的解題思路。剛開(kāi)始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開(kāi)拓思路,提高自己的分析、解決能力,掌握一般的解題規律。對于一些易錯題,可備有錯題集,寫(xiě)出自己的解題思路和正確的解題過(guò)程兩者一起比較找出自己的錯誤所在,以便及時(shí)更正。在平時(shí)要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運用自如。實(shí)踐證明:越到關(guān)鍵時(shí)候,你所表現的解題習慣與平時(shí)練習無(wú)異。如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養成良好的解題習慣是非常重要的。

  調整心態(tài),正確對待考試。

  首先,應把主要精力放在基礎知識、基本技能、基本方法這三個(gè)方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時(shí)候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰(shuí)也不能把我打倒,要有自己不垮,誰(shuí)也不能打垮我的自豪感。

  在考試前要做好準備,練練常規題,把自己的思路展開(kāi),切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會(huì )嘗試得分,使自己的水平正常甚至超常發(fā)揮。

高二數學(xué)知識點(diǎn)總結5

  等差數列

  對于一個(gè)數列{an},如果任意相鄰兩項之差為一個(gè)常數,那么該數列為等差數列,且稱(chēng)這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

  那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:

  將以上n—1個(gè)式子相加,便會(huì )接連消去很多相關(guān)的項,最終等式左邊余下an,而右邊則余下a1和n—1個(gè)d,如此便得到上述通項公式。

  此外,數列前n項的和,其具體推導方式較簡(jiǎn)單,可用以上類(lèi)似的疊加的方法,也可以采取迭代的方法,在此,不再復述。

  值得說(shuō)明的是,前n項的和Sn除以n后,便得到一個(gè)以a1為首項,以d/2為公差的新數列,利用這一特點(diǎn)可以使很多涉及Sn的`數列問(wèn)題迎刃而解。

  等比數列

  對于一個(gè)數列{an},如果任意相鄰兩項之商(即二者的比)為一個(gè)常數,那么該數列為等比數列,且稱(chēng)這一定值商為公比q;從第一項a1到第n項an的總和,記為T(mén)n。

  那么,通項公式為(即a1乘以q的(n—1)次方,其推導為“連乘原理”的思想:

  a2=a1Xq,

  a3=a2Xq,

  a4=a3Xq,

  ````````

  an=an—1Xq,

  將以上(n—1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n—1)個(gè)q的乘積,也即得到了所述通項公式。

  此外,當q=1時(shí)該數列的前n項和Tn=a1Xn

  當q≠1時(shí)該數列前n項的和Tn=a1X(1—q^(n))/(1—q)。

高二數學(xué)知識點(diǎn)總結6

  分層抽樣

  先將總體中的所有單位按照某種特征或標志(性別、年齡等)劃分成若干類(lèi)型或層次,然后再在各個(gè)類(lèi)型或層次中采用簡(jiǎn)單隨機抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來(lái)構成總體的樣本。

  兩種方法

  1.先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統抽樣的方法抽取樣本。

  2.分層抽樣是把異質(zhì)性較強的總體分成一個(gè)個(gè)同質(zhì)性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。

  分層標準

  (1)以調查所要分析和研究的主要變量或相關(guān)的變量作為分層的標準。

  (2)以保證各層內部同質(zhì)性強、各層之間異質(zhì)性強、突出總體內在結構的變量作為分層變量。

  (3)以那些有明顯分層區分的變量作為分層變量。

  分層的'比例問(wèn)題

  (1)按比例分層抽樣:根據各種類(lèi)型或層次中的單位數目占總體單位數目的比重來(lái)抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會(huì )非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專(zhuān)門(mén)研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數據資料進(jìn)行加權處理,調整樣本中各層的比例,使數據恢復到總體中各層實(shí)際的比例結構。

  (1)定義:

  對于函數y=f(x)(x∈D),把使f(x)=0成立的實(shí)數x叫做函數y=f(x)(x∈D)的零點(diǎn)。

  (2)函數的零點(diǎn)與相應方程的根、函數的圖象與x軸交點(diǎn)間的關(guān)系:

  方程f(x)=0有實(shí)數根?函數y=f(x)的圖象與x軸有交點(diǎn)?函數y=f(x)有零點(diǎn)。

  (3)函數零點(diǎn)的判定(零點(diǎn)存在性定理):

  如果函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線(xiàn),并且有f(a)·f(b)<0,那么,函數y=f(x)在區間(a,b)內有零點(diǎn),即存在c∈(a,b),使得f(c)=0,這個(gè)c也就是方程f(x)=0的根。

  二二次函數y=ax2+bx+c(a>0)的圖象與零點(diǎn)的關(guān)系

  三二分法

  對于在區間[a,b]上連續不斷且f(a)·f(b)<0的函數y=f(x),通過(guò)不斷地把函數f(x)的零點(diǎn)所在的區間一分為二,使區間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)近似值的方法叫做二分法。

  1、函數的零點(diǎn)不是點(diǎn):

  函數y=f(x)的零點(diǎn)就是方程f(x)=0的實(shí)數根,也就是函數y=f(x)的圖象與x軸交點(diǎn)的橫坐標,所以函數的零點(diǎn)是一個(gè)數,而不是一個(gè)點(diǎn).在寫(xiě)函數零點(diǎn)時(shí),所寫(xiě)的一定是一個(gè)數字,而不是一個(gè)坐標。

  2、對函數零點(diǎn)存在的判斷中,必須強調:

  (1)、f(x)在[a,b]上連續;

  (2)、f(a)·f(b)<0;

  (3)、在(a,b)內存在零點(diǎn)。

  這是零點(diǎn)存在的一個(gè)充分條件,但不必要。

  3、對于定義域內連續不斷的函數,其相鄰兩個(gè)零點(diǎn)之間的所有函數值保持同號。

  利用函數零點(diǎn)的存在性定理判斷零點(diǎn)所在的區間時(shí),首先看函數y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函數y=f(x)在區間(a,b)內必有零點(diǎn)。

  四判斷函數零點(diǎn)個(gè)數的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,則有幾個(gè)解就有幾個(gè)零點(diǎn)。

  2、零點(diǎn)存在性定理法:

  利用定理不僅要判斷函數在區間[a,b]上是連續不斷的曲線(xiàn),且f(a)·f(b)<0,還必須結合函數的圖象與性質(zhì)(如單調性、奇偶性、周期性、對稱(chēng)性)才能確定函數有多少個(gè)零點(diǎn)。

  3、數形結合法:

  轉化為兩個(gè)函數的圖象的交點(diǎn)個(gè)數問(wèn)題.先畫(huà)出兩個(gè)函數的圖象,看其交點(diǎn)的個(gè)數,其中交點(diǎn)的個(gè)數,就是函數零點(diǎn)的個(gè)數。

  已知函數有零點(diǎn)(方程有根)求參數取值常用的方法

  1、直接法:

  直接根據題設條件構建關(guān)于參數的不等式,再通過(guò)解不等式確定參數范圍。

  2、分離參數法:

  先將參數分離,轉化成求函數值域問(wèn)題加以解決。

  3、數形結合法:

  先對解析式變形,在同一平面直角坐標系中,畫(huà)出函數的圖象,然后數形結合求解。

高二數學(xué)知識點(diǎn)總結7

  已知函數有零點(diǎn)(方程有根)求參數取值常用的.方法

  1、直接法:

  直接根據題設條件構建關(guān)于參數的不等式,再通過(guò)解不等式確定參數范圍。

  2、分離參數法:

  先將參數分離,轉化成求函數值域問(wèn)題加以解決。

  3、數形結合法:

  先對解析式變形,在同一平面直角坐標系中,畫(huà)出函數的圖象,然后數形結合求解。

高二數學(xué)知識點(diǎn)總結8

  數列

  1、數列的定義及數列的通項公式:

 、 an?f(n),數列是定義域為N

  的函數f(n),當n依次取1,2,???時(shí)的一列函數值② i。歸納法

  若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?

 ?Sn?f(an)

  iv。若Sn?f(an),先求a

  1?得到關(guān)于an?1和an的遞推關(guān)系式

  S?f(a)n?1?n?1?Sn?2an?1

  例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an

 ?Sn?1?2an?1?1

  2、等差數列:

 、俣x:a

  n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時(shí),an為關(guān)于n的一次函數;

  d>0時(shí),an為單調遞增數列;d<0時(shí),a

  n為單調遞減數列。

  n(n?1)2

 、矍皀?na1?

  d,

  d?0時(shí),Sn是關(guān)于n的`不含常數項的一元二次函數,反之也成立。

 、苄再|(zhì):ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:

 、俣x:

  an?1an

 ?q(常數),是證明數列是等比數列的重要工具。

  a?b2

 、谕棔r(shí)為常數列)。

 、。前n項和

  需特別注意,公比為字母時(shí)要討論。

高二數學(xué)知識點(diǎn)總結9

  1、圓的標準方程:

  圓心為A(a,b),半徑為r的圓的方程

  2、點(diǎn)與圓的關(guān)系的判斷方法:(1),點(diǎn)在圓外(2),點(diǎn)在圓上(3),點(diǎn)在圓內

  4.1.2圓的一般方程

  1、圓的一般方程:

  2、圓的一般方程的特點(diǎn):

  (1)①x2和y2的系數相同,不等于0.

 、跊](méi)有xy這樣的二次項.

  (2)圓的一般方程中有三個(gè)特定的系數D、E、F,因之只要求出這三個(gè)系數,圓的方程就確定了.

  (3)、與圓的標準方程相比較,它是一種特殊的二元二次方程,代數特征明顯,圓的標準方程則指出了圓心坐標與半徑大小,幾何特征較明顯。

  4.2.1圓與圓的位置關(guān)系

  1、用點(diǎn)到直線(xiàn)的距離來(lái)判斷直線(xiàn)與圓的位置關(guān)系.

  4.2.2圓與圓的位置關(guān)系

  4.2.3直線(xiàn)與圓的方程的應用

  1、利用平面直角坐標系解決直線(xiàn)與圓的位置關(guān)系;

  2、過(guò)程與方法

  用坐標法解決幾何問(wèn)題的步驟:

  第一步:建立適當的平面直角坐標系,用坐標和方程表示問(wèn)題中的幾何元素,將平面幾何問(wèn)題轉化為代數問(wèn)題;

  第二步:通過(guò)代數運算,解決代數問(wèn)題;

  第三步:將代數運算結果“翻譯”成幾何結論.

  4.3.1空間直角坐標系

  1、點(diǎn)M對應著(zhù)確定的.有序實(shí)數組,對應著(zhù)空間直角坐標系中的一點(diǎn)3、空間中任意點(diǎn)M的坐標都可以用有序實(shí)數組來(lái)表示,該數組叫做點(diǎn)M在此空間直角坐標系中的坐標,記M。

  拓展閱讀:高中數學(xué)學(xué)習方法

  1.從數學(xué)基礎入手,細化到每個(gè)知識點(diǎn)的復習

  高三文科數學(xué)復習的起點(diǎn)要“低”,最好從最最基本的知識點(diǎn)入手。一方面,以課本例題為起點(diǎn);另一方面,以課本練習題為起點(diǎn),這最主要是因為高考文科數學(xué)內容都是以課本為“源”的。只有將課本中的“源”充分弄懂、弄明白,才有可能在高考題海中做到舉一反三,立于不敗之地。另外也可以從中(低)檔題的練習為起點(diǎn),如:數學(xué)選擇、填空和較簡(jiǎn)單的解答題等,確保難度低、基礎知識點(diǎn)的題目不丟分。

  2.積極參與課堂復習,課后要勤快反思

  高三備考時(shí)間緊張,需要掌握的內容較多,因此課堂復習的容量也相當大,節奏也較快。為了達到高效復習效果,學(xué)生應緊跟教師節奏,積極參與,爭取達到“查漏補缺”的效果,在考試中真正發(fā)揮效益。當然,除了課堂復習以外,學(xué)生的課后復習時(shí)間也較多,許多學(xué)生認為數學(xué)復習就是多做題,提高解題效率。

  3.掌握解題速度與技巧

  通過(guò)對《考試說(shuō)明》和《考綱》信息的了解,并明確了解高考文科數學(xué)到底“考什么”、“考多難”、“怎樣考”,并有針對性的探尋更多的解題技巧。同時(shí)在平常的考試中,都要嚴格要求,將其作為高考的“預演”,在有限的時(shí)間內,加快解題速度,并從反復的考試實(shí)踐中,總結出不同題型的解答應對策略。

高二數學(xué)知識點(diǎn)總結10

  【不等關(guān)系及不等式】

  一、不等關(guān)系及不等式知識點(diǎn)

  1.不等式的定義

  在客觀(guān)世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數學(xué)符號、、連接兩個(gè)數或代數式以表示它們之間的.不等關(guān)系,含有這些不等號的式子,叫做不等式.

  2.比較兩個(gè)實(shí)數的大小

  兩個(gè)實(shí)數的大小是用實(shí)數的運算性質(zhì)來(lái)定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

  3.不等式的性質(zhì)

  (1)對稱(chēng)性:ab

  (2)傳遞性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可開(kāi)方:a0

  (nN,n2).

  注意:

  一個(gè)技巧

  作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

  一種方法

  待定系數法:求代數式的范圍時(shí),先用已知的代數式表示目標式,再利用多項式相等的法則求出參數,最后利用不等式的性質(zhì)求出目標式的范圍.

高二數學(xué)知識點(diǎn)總結11

  一、映射與函數:

  (1)映射的概念:

  (2)一一映射:

  (3)函數的概念:

  二、函數的三要素:

  相同函數的判斷方法:

 、賹▌t;

 、诙x域(兩點(diǎn)必須同時(shí)具備)

  (1)函數解析式的'求法:

 、俣x法(拼湊):

 、趽Q元法:

 、鄞ㄏ禂捣:

 、苜x值法:

  (2)函數定義域的求法:

 、俸瑓(wèn)題的定義域要分類(lèi)討論;

 、趯τ趯(shí)際問(wèn)題,在求出函數解析式后;必須求出其定義域,此時(shí)的定義域要根據實(shí)際意義來(lái)確定。

  (3)函數值域的求法:

 、倥浞椒:轉化為二次函數,利用二次函數的特征來(lái)求值;常轉化為型如:的形式;

 、谀媲蠓(反求法):通過(guò)反解,用來(lái)表示,再由的取值范圍,通過(guò)解不等式,得出的取值范圍;常用來(lái)解,型如:;

 、軗Q元法:通過(guò)變量代換轉化為能求值域的函數,化歸思想;

 、萑怯薪绶:轉化為只含正弦、余弦的函數,運用三角函數有界性來(lái)求值域;

 、藁静坏仁椒:轉化成型如:,利用平均值不等式公式來(lái)求值域;

 、邌握{性法:函數為單調函數,可根據函數的單調性求值域。

 、鄶敌谓Y合:根據函數的幾何圖形,利用數型結合的方法來(lái)求值域。

高二數學(xué)知識點(diǎn)總結12

  1、學(xué)會(huì )三視圖的分析:

  2、斜二測畫(huà)法應注意的地方:

 。1)在已知圖形中取互相垂直的'軸Ox、Oy。畫(huà)直觀(guān)圖時(shí),把它畫(huà)成對應軸o'x'、o'y'、使∠x(chóng)'o'y'=45°(或135°);(2)平行于x軸的線(xiàn)段長(cháng)不變,平行于y軸的線(xiàn)段長(cháng)減半。(3)直觀(guān)圖中的45度原圖中就是90度,直觀(guān)圖中的90度原圖一定不是90度。

  3、表(側)面積與體積公式:

 、胖w:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

 、棋F體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

 、桥_體①表面積:S=S側+S上底S下底②側面積:S側=

 、惹蝮w:①表面積:S=;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書(shū)寫(xiě)

 。1)直線(xiàn)與平面平行:①線(xiàn)線(xiàn)平行線(xiàn)面平行;②面面平行線(xiàn)面平行。

 。2)平面與平面平行:①線(xiàn)面平行面面平行。

 。3)垂直問(wèn)題:線(xiàn)線(xiàn)垂直線(xiàn)面垂直面面垂直。核心是線(xiàn)面垂直:垂直平面內的兩條相交直線(xiàn)

  5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)

 、女惷嬷本(xiàn)所成角的求法:平移法:平移直線(xiàn),構造三角形;

 、浦本(xiàn)與平面所成的角:直線(xiàn)與射影所成的角

高二數學(xué)知識點(diǎn)總結13

  考點(diǎn)一:向量的概念、向量的基本定理

  【內容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線(xiàn)向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。

  注意對向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無(wú)法比較大小,它們的?杀容^大小。

  考點(diǎn)二:向量的運算

  【內容解讀】向量的運算要求掌握向量的加減法運算,會(huì )用平行四邊形法則、三角形法則進(jìn)行向量的加減運算;掌握實(shí)數與向量的積運算,理解兩個(gè)向量共線(xiàn)的含義,會(huì )判斷兩個(gè)向量的平行關(guān)系;掌握向量的數量積的運算,體會(huì )平面向量的數量積與向量投影的`關(guān)系,并理解其幾何意義,掌握數量積的坐標表達式,會(huì )進(jìn)行平面向量積的運算,能運用數量積表示兩個(gè)向量的夾角,會(huì )用向量積判斷兩個(gè)平面向量的垂直關(guān)系。

  【命題規律】命題形式主要以選擇、填空題型出現,難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標運算,有時(shí)也會(huì )與其它內容相結合。

  考點(diǎn)三:定比分點(diǎn)

  【內容解讀】掌握線(xiàn)段的定比分點(diǎn)和中點(diǎn)坐標公式,并能熟練應用,求點(diǎn)分有向線(xiàn)段所成比時(shí),可借助圖形來(lái)幫助理解。

  【命題規律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現,難度一般。由于向量應用的廣泛性,經(jīng)常也會(huì )與三角函數,解析幾何一并考查,若出現在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。

  考點(diǎn)四:向量與三角函數的綜合問(wèn)題

  【內容解讀】向量與三角函數的綜合問(wèn)題是高考經(jīng)常出現的問(wèn)題,考查了向量的知識,三角函數的知識,達到了高考中試題的覆蓋面的要求。

  【命題規律】命題以三角函數作為坐標,以向量的坐標運算或向量與解三角形的內容相結合,也有向量與三角函數圖象平移結合的問(wèn)題,屬中檔偏易題。

  考點(diǎn)五:平面向量與函數問(wèn)題的交匯

  【內容解讀】平面向量與函數交匯的問(wèn)題,主要是向量與二次函數結合的問(wèn)題為主,要注意自變量的取值范圍。

  【命題規律】命題多以解答題為主,屬中檔題。

  考點(diǎn)六:平面向量在平面幾何中的應用

  【內容解讀】向量的坐標表示實(shí)際上就是向量的代數表示.在引入向量的坐標表示后,使向量之間的運算代數化,這樣就可以將“形”和“數”緊密地結合在一起.因此,許多平面幾何問(wèn)題中較難解決的問(wèn)題,都可以轉化為大家熟悉的代數運算的論證.也就是把平面幾何圖形放到適當的坐標系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標,這樣將有關(guān)平面幾何問(wèn)題轉化為相應的代數運算和向量運算,從而使問(wèn)題得到解決.

  【命題規律】命題多以解答題為主,屬中等偏難的試題。

高二數學(xué)知識點(diǎn)總結14

  一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣。

  簡(jiǎn)單隨機抽樣的特點(diǎn):

  (1)用簡(jiǎn)單隨機抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為

  (2)簡(jiǎn)單隨機抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

  (3)簡(jiǎn)單隨機抽樣方法,體現了抽樣的客觀(guān)性與公平性,是其他更復雜抽樣方法的'基礎.

  (4)簡(jiǎn)單隨機抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣

  簡(jiǎn)單抽樣常用方法:

  (1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫(xiě)在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當總體的個(gè)體數不太多時(shí)適宜采用抽簽法.(2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開(kāi)始的數字;第三步,獲取樣本號碼概率:

  相關(guān)高中數學(xué)知識點(diǎn):系統抽樣

  系統抽樣的概念:

  當整體中個(gè)體數較多時(shí),將整體均分為幾個(gè)部分,然后按一定的規則,從每一個(gè)部分抽取1個(gè)個(gè)體而得到所需要的樣本的方法叫系統抽樣。

  系統抽樣的步驟:

  (1)采用隨機方式將總體中的個(gè)體編號;

  (2)將整個(gè)編號進(jìn)行均勻分段在確定相鄰間隔k后,若不能均勻分段,即

  =k不是整數時(shí),可采用隨機方法從總體中剔除一些個(gè)體,使總體中剩余的個(gè)體數N′滿(mǎn)足是整數;

  (3)在第一段中采用簡(jiǎn)單隨機抽樣方法確定第一個(gè)被抽得的個(gè)體編號l;

  (4)依次將l加上ik,i=1,2,…,(n-1),得到其余被抽取的個(gè)體的編號,從而得到整個(gè)樣本。

  相關(guān)高中數學(xué)知識點(diǎn):分層抽樣

  分層抽樣:

  當已知總體由差異明顯的幾部分組成時(shí),常將總體分成幾部分,然后按照各部分所占的比例進(jìn)行抽樣,這種抽樣叫做分層抽樣,其所分成的各個(gè)部分叫做層。

  利用分層抽樣抽取樣本,每一層按照它在總體中所占的比例進(jìn)行抽取。

  不放回抽樣和放回抽樣:

  在抽樣中,如果每次抽出個(gè)體后不再將它放回總體,稱(chēng)這樣的抽樣為不放回抽樣;如果每次抽出個(gè)體后再將它放回總體,稱(chēng)這樣的抽樣為放回抽樣.

  隨機抽樣、系統抽樣、分層抽樣都是不放回抽樣

  分層抽樣的特點(diǎn):

  (1)分層抽樣適用于差異明顯的幾部分組成的情況;

  (2)在每一層進(jìn)行抽樣時(shí),在采用簡(jiǎn)單隨機抽樣或系統抽樣;

  (3)分層抽樣充分利用已掌握的信息,使樣具有良好的代表性;

  (4)分層抽樣也是等概率抽樣,而且在每層抽樣時(shí),可以根據具體情況采用不同的抽樣方法,因此應用較為廣泛。

高二數學(xué)知識點(diǎn)總結15

  高二年級數學(xué)必修二知識點(diǎn)總結

  基本概念

  公理1:如果一條直線(xiàn)上的兩點(diǎn)在一個(gè)平面內,那么這條直線(xiàn)上的所有的點(diǎn)都在這個(gè)平面內。

  公理2:如果兩個(gè)平面有一個(gè)公共點(diǎn),那么它們有且只有一條通過(guò)這個(gè)點(diǎn)的公共直線(xiàn)。

  公理3:過(guò)不在同一條直線(xiàn)上的三個(gè)點(diǎn),有且只有一個(gè)平面。

  推論1:經(jīng)過(guò)一條直線(xiàn)和這條直線(xiàn)外一點(diǎn),有且只有一個(gè)平面。

  推論2:經(jīng)過(guò)兩條相交直線(xiàn),有且只有一個(gè)平面。

  推論3:經(jīng)過(guò)兩條平行直線(xiàn),有且只有一個(gè)平面。

  公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行。

  等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行并且方向相同,那么這兩個(gè)角相等。

  高二年級數學(xué)知識點(diǎn)

  空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面

  按是否共面可分為兩類(lèi):

 。1)共面:平行、相交

 。2)異面:

  異面直線(xiàn)的定義:不同在任何一個(gè)平面內的兩條直線(xiàn)或既不平行也不相交。

  異面直線(xiàn)判定定理:用平面內一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

  兩異面直線(xiàn)所成的角:范圍為(0°,90°)esp?臻g向量法

  兩異面直線(xiàn)間距離:公垂線(xiàn)段(有且只有一條)esp?臻g向量法

  若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

 。1)有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);(2)沒(méi)有公共點(diǎn)——平行或異面

  直線(xiàn)和平面的位置關(guān)系:

  直線(xiàn)和平面只有三種位置關(guān)系:在平面內、與平面相交、與平面平行

 、僦本(xiàn)在平面內——有無(wú)數個(gè)公共點(diǎn)

 、谥本(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

  直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內的射影所成的銳角。

  空間向量法(找平面的法向量)

  規定:a、直線(xiàn)與平面垂直時(shí),所成的角為直角,b、直線(xiàn)與平面平行或在平面內,所成的角為0°角

  由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]

  最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內任一條直線(xiàn)所成角中的最小角

  三垂線(xiàn)定理及逆定理:如果平面內的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直

  直線(xiàn)和平面垂直

  直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直。直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

  直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

  直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)

  直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

  直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

  高二數學(xué)重點(diǎn)知識點(diǎn)梳理

  簡(jiǎn)單隨機抽樣的定義:

  一般地,設一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內的各個(gè)個(gè)體被抽到的機會(huì )都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機抽樣。

  簡(jiǎn)單隨機抽樣的特點(diǎn):

 。1)用簡(jiǎn)單隨機抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的'樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為

 ;在整個(gè)抽樣過(guò)程中各個(gè)個(gè)體被抽到的概率為

 。2)簡(jiǎn)單隨機抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等;

 。3)簡(jiǎn)單隨機抽樣方法,體現了抽樣的客觀(guān)性與公平性,是其他更復雜抽樣方法的基礎。

 。4)簡(jiǎn)單隨機抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽;它是一種等概率抽樣

  簡(jiǎn)單抽樣常用方法:

 。1)抽簽法:先將總體中的所有個(gè)體(共有N個(gè))編號(號碼可從1到N),并把號碼寫(xiě)在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號簽,連續抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當總體的個(gè)體數不太多時(shí)適宜采用抽簽法。

 。2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個(gè)體編號;第二步,選定開(kāi)始的數字;第三步,獲取樣本號碼概率。

【高二數學(xué)知識點(diǎn)總結】相關(guān)文章:

數學(xué)高二知識點(diǎn)總結03-07

高二數學(xué)的知識點(diǎn)總結03-08

數學(xué)高二知識點(diǎn)總結歸納03-19

高二數學(xué)知識點(diǎn)總結01-31

高二數學(xué)知識點(diǎn)總結12-18

高二數學(xué)的數列知識點(diǎn)總結12-02

高二數學(xué)知識點(diǎn)總結06-02

高二數學(xué)水平考知識點(diǎn)總結08-08

高二數學(xué)知識點(diǎn)歸納總結12-13

【熱門(mén)】高二數學(xué)知識點(diǎn)總結12-01